Lý thuyết diện tích xung quanh và diện tích toàn phần của hình hộp chữ nhật — Không quảng cáo

Toán lớp 5, giải toán lớp 5, giải bài tập sgk toán 5 (sách mới)


Lý thuyết diện tích xung quanh và diện tích toàn phần của hình hộp chữ nhật

a) Diện tích xung quanh.

a) Diện tích xung quanh

1. Diện tích xung quanh và diện tích toàn phần của hình hộp chữ nhật

a) Định nghĩa

- Diện tích xung quanh của hình hộp chữ nhật là tổng diện tích bốn mặt bên của hình hộp chữ nhật.

- Diện tích toàn phần của hình hộp chữ nhật là tổng của diện tích xung quanh và diện tích hai đáy.

b) Quy tắc: Giử sử hình hộp chữ nhật có chiều dài là \(a\), chiều rộng là \(b\) và chiều cao là \(h\).

- Muốn tính diện tích xung quanh của hình hộp chữ nhật ta lấy chu vi mặt đáy nhân với chiều cao (cùng đơn vị đo).

\({S_{xq}} = (a + b) \times 2 \times h\)

- Muốn tính diện tích toàn phần của hình hộp chữ nhật ta lấy diện tích xung quanh cộng với diện tích hai đáy.

\({S_{tp}} = S{}_{xq} + \,\,{S_{day}} \times 2 = (a + b) \times 2 \times h + 2 \times a \times b\)

Lưu ý:

- Chu vi mặt đáy bằng tổng của chiều dài và chiều rộng nhân với \(2\).

- Diện tích mặt đáy bằng tích của chiều dài và chiều rộng.

Ví dụ: Tính diện tích xung quanh và diện tích toàn phần của hình hộp chữ nhật có chiều dài \(8cm\), chiều rộng \(6cm\) và chiều cao \(4cm\).

Giải:

Chu vi đáy của hình hộp chữ nhật là:

\((8 + 6) \times 2 = 28\;(cm)\)

Diện tích xung quanh của hình hộp chữ nhật đó là:

\(28 \times 4 = 112\;(c{m^2})\)

Diện tích một đáy là:

\(8 \times 6 = 48\;(c{m^2})\)

Diện tích toàn phần của hình hộp chữ nhật đó là:

\(112 + 48 \times 2 = 208\;(c{m^2})\)

Đáp số: Diện tích xung quanh: \(112c{m^2}\);

Diện tích toàn phần: \(208c{m^2}\).

Chú ý: Khi tìm diện tích xung quanh ta có thể làm gộp thành :\((8 + 6) \times 2 \times 4 = 112c{m^2}\) .


Cùng chủ đề:

Lý thuyết chia số thập phân cho một số thập phân
Lý thuyết chia số đo thời gian cho một số
Lý thuyết chu vi hình tròn
Lý thuyết cộng hai số thập phân
Lý thuyết diện tích hình tam giác
Lý thuyết diện tích xung quanh và diện tích toàn phần của hình hộp chữ nhật
Lý thuyết diện tích xung quanh và diện tích toàn phần của hình lập phương
Lý thuyết giải toán về tỉ số phần trăm
Lý thuyết giải toán về tỉ số phần trăm (tiếp theo)
Lý thuyết giới thiệu biểu đồ hình quạt
Lý thuyết giới thiệu hình trụ. Giới thiệu hình cầu