Lý thuyết Hai đường thẳng song song trong không gian - SGK Toán 11 Cánh Diều — Không quảng cáo

Toán 11, giải toán lớp 11 cánh diều Bài 2. Hai đường thẳng song song trong không gian Toán


Lý thuyết Hai đường thẳng song song trong không gian - SGK Toán 11 Cánh Diều

I. Vị trí tương đối của hai đường thẳng

I. Vị trí tương đối của hai đường thẳng

Cho hai đường thẳng a, b phân biệt trong không gian. Khi đó chỉ xảy ra các trường hợp sau:

  • Có một mặt phẳng chứa a và b. Khi đó ta nói a và b đồng phẳng. Khi đó, a và b có thể cắt nhau, song song với nhau hoặc trùng nhau.

  • Không có mặt phẳng nào chứa a và b. Khi đó ta nói a và b chéo nhau.

* Nhận xét: Hai đường thẳng song song là hai đường thẳng cùng nằm trong một mặt phẳng và không có điểm chung. Kí hiệu //.

II. Tính chất của hai đường thẳng song song

  • Trong không gian, qua một điểm không nằm trên đường thẳng cho trước, có đúng một đường thẳng song song với đường thẳng đã cho.

  • Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì 3 giao tuyến đó đồng quy hoặc đôi một song song.

* Hệ quả: Nếu hai mặt phẳng chứa 2 đường thẳng song song với nhau thì giao tuyến (nếu có) của chúng song song với 2 đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.

  • Trong không gian, hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì song song với nhau.


Cùng chủ đề:

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cánh Diều
Lý thuyết Góc giữa đường thẳng và mặt phẳng, góc nhị diện - Toán 11 Cánh diều
Lý thuyết Góc lượng giác. Giá trị lượng giác của góc lượng giác - SGK Toán 11 Cánh Diều
Lý thuyết Hai mặt phẳng song song - SGK Toán 11 Cánh Diều
Lý thuyết Hai mặt phẳng vuông góc - Toán 11 Cánh diều
Lý thuyết Hai đường thẳng song song trong không gian - SGK Toán 11 Cánh Diều
Lý thuyết Hai đường thẳng vuông góc - Toán 11 Cánh diều
Lý thuyết Hàm số liên tục - SGK Toán 11 Cánh Diều
Lý thuyết Hàm số lượng giác và đồ thị - SGK Toán 11 Cánh Diều
Lý thuyết Hàm số mũ. Hàm số lôgarit - Toán 11 Cánh diều
Lý thuyết Hình lăng trụ và hình hộp - SGK Toán 11 Cánh Diều