Lý thuyết Hình cầu Toán 9 Cánh diều
1. Hình cầu Định nghĩa Hình cầu là hình được tạo ra khi quay một nửa hình tròn một vòng xung quanh một đường thẳng cố định chứa đường kính của nó.
1. Hình cầu
Định nghĩa
Hình cầu là hình được tạo ra khi quay một nửa hình tròn một vòng xung quanh một đường thẳng cố định chứa đường kính của nó. |
Ví dụ:
Với hình cầu như ở hình trên, ta có:
- Nửa đường tròn đường kính AB quét nên mặt cầu; như vậy, mặt cầu là hình được tạo ra khi quay một nửa đường tròn một vòng xung quanh đường thẳng cố định chứa đường kính của nó;
- Điểm O là tâm của hình cầu (hay tâm của mặt cầu);
- Đoạn thẳng AB là đường kính của hình cầu (hay đường kính của mặt cầu);
- R là bán kính của hình cầu (hay bán kính của mặt cầu).
Phần chung của mặt phẳng và mặt cầu
- Nếu cắt một hình cầu bởi một mặt phẳng thì phần chung giữa chúng là một hình tròn như hình trên. Nếu cắt một hình cầu bởi một mặt phẳng đi qua tâm hình cầu thì phần chung giữa chúng là một hình tròn lớn như hình trên. - Nếu cắt một mặt cầu bởi một mặt phẳng thì phần chung giữa chúng là một đường tròn. |
2. Diện tích của mặt cầu
Diện tích S của mặt cầu có bán kính R là: \(S = 4\pi {R^2}\). |
Ví dụ:
Diện tích mặt cầu là:
\(S = 4\pi {R^2} = 4\pi {.10^2} = 400\pi \left( {c{m^2}} \right)\),
3. Thể tích hình cầu
Thể tích của hình cầu có bán kính R là \(V = \frac{4}{3}\pi {R^3}\). |
Ví dụ:
Thể tích hình cầu là:
\(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.10^3} = \frac{{4000\pi }}{3}\left( {c{m^3}} \right)\).