Lý thuyết Một số hệ thức về cạnh và góc trong tam giác vuông Toán 9 Cánh diều — Không quảng cáo

Toán 9 cánh diều


Lý thuyết Một số hệ thức về cạnh và góc trong tam giác vuông Toán 9 Cánh diều

1. Tính cạnh góc vuông theo cạnh huyền và tỉ số lượng giác của góc nhọn Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề. Cạnh góc vuông = (cạnh huyền ) × (sin góc đối) = (cạnh huyền ) × (cosin góc kề)

1. Tính cạnh góc vuông theo cạnh huyền và tỉ số lượng giác của góc nhọn

Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề.

Cạnh góc vuông = (cạnh huyền ) × (sin góc đối)

= (cạnh huyền ) × (cosin góc kề)

Ví dụ 1:

Trong tam giác ABC vuông tại A, ta có:

\(\begin{array}{l}b = a.\sin B = a.\cos C;\\c = a.\sin C = a.\cos B.\end{array}\)

2. Tính cạnh góc vuông theo cạnh góc vuông còn lại và tỉ số lượng giác của góc nhọn

Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh góc vuông kia nhân với tang góc đối hoặc côtang góc kề.

Cạnh góc vuông = (cạnh góc vuông còn lại ) × (tan góc đối)

= (cạnh góc vuông còn lại ) × (cot góc kề)

Ví dụ 2:

Trong tam giác ABC vuông tại A, ta có:

\(\begin{array}{l}b = c.\tan B = c.\cot C;\\c = b.\tan C = b.\cot B.\end{array}\)

3. Áp dụng tỉ số lượng giác của góc nhọn để giải tam giác vuông

Giải tam giác vuông là tìm tất cả độ dài các cạnh và số đo các góc còn lại của tam giác đó.


Cùng chủ đề:

Lý thuyết Hàm số y = ax² (a ≠ 0) Toán 9 Cánh diều
Lý thuyết Hình cầu Toán 9 Cánh diều
Lý thuyết Hình nón Toán 9 Cánh diều
Lý thuyết Hình trụ Toán 9 Cánh diều
Lý thuyết Mô tả và biểu diễn dữ liệu trên các bảng, biểu đồ Toán 9 Cánh diều
Lý thuyết Một số hệ thức về cạnh và góc trong tam giác vuông Toán 9 Cánh diều
Lý thuyết Một số phép biến đổi căn thức bậc hai của biểu thức đại số Toán 9 Cánh diều
Lý thuyết Một số phép tính về căn bậc hai của một số thực Toán 9 Cánh diều
Lý thuyết Phép quay Toán 9 Cánh diều
Lý thuyết Phép thử ngẫu nhiên và không gian mẫu. Xác suất của biến cố Toán 9 Cánh diều
Lý thuyết Phương trình bậc hai một ẩn Toán 9 Cánh diều