Lý thuyết Số thực. Giá trị tuyệt đối của số thực SGK Toán 7 - Chân trời sáng tạo
1. Số thực và tập hợp các số thực
1. Số thực và tập hợp các số thực
* Số hữu tỉ và số vô tỉ gọi chung là số thực.
* Tập hợp các số thực được kí hiệu là R.
Chú ý: + Trong tập số thực cũng có các phép toán với các tính chất như trong tập số hữu tỉ.
2. Thứ tự trong tập hợp các số thực
So sánh 2 số thực:
* Các số thực đều viết được dưới dạng số thập phân ( hữu hạn hay vô hạn). Ta có thể so sánh 2 số thực tương tự như so sánh số thập phân.
Ví dụ:
0,32 2 … < 0,32 4 … nên 0,3(2) < 0,324…
* Với 2 số thực bất kì, ta luôn có hoặc a = b hoặc a > b hoặc a < b
* Nếu a < b ; b < c thì a < c ( Tính chất bắc cầu)
* Nếu a < b thì điểm a nằm trước điểm b trên trục số
Chú ý: Nếu 0 < a < b thì \(\sqrt a < \sqrt b \)
Ví dụ: Vì 3 < 4 nên \(\sqrt 3 < \sqrt 4 = 2\)
3. Trục số thực
+ Trong tập số thực cũng có các phép toán với các tính chất như trong tập số hữu tỉ.
* Trục số thực được biểu diễn bởi 1 số điểm trên trục số. Ngược lại, mỗi điểm trên trục số đều biểu diễn một số thực.
Chú ý: Các số thực lấp đầy trục số.
4. Số đối của một số thực
Hai số thực có điểm biểu diễn trên trục số cách đều điểm gốc O và nằm về hai phía ngược nhau là hai số đối nhau , số này là số đối của số kia.
Số đối của số thực x là –x. Ta có: x + (-x) = 0
Ví dụ: Số đối của \( - \sqrt 8 \) là \(\sqrt 8 \)
Chú ý: Nếu a > b thì –a < -b
5. Giá trị tuyệt đối của một số thực
Khoảng cách từ điểm a trên trục số đến gốc O là giá trị tuyệt đối của số a, kí hiệu là |a|
Nhận xét:
+ Hai số đối nhau thì có giá trị tuyệt đối bằng nhau
+ Giá trị tuyệt đối của 0 là 0
+ Giá trị tuyệt đối của một số dương là chính nó
+ Giá trị tuyệt đối của một số âm là số đối của nó
+ Giá trị tuyệt đối của một số thực luôn không âm.
Ví dụ: |2,3| = 2,3
|-2,3| = 2,3
|-2,3| = |2,3|
Chú ý: Giả sử 2 điểm A và B lần lượt biểu diễn 2 số thực a và b khác nhau trên trục số. Khi đó, độ dài của đoạn thẳng AB là | a – b|