Trả lời câu hỏi 3 Bài 7 trang 56 Toán 9 Tập 2 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 7. Phương trình quy về phương trình bậc hai


Trả lời câu hỏi 3 Bài 7 trang 56 Toán 9 Tập 2

Giải phương trình sau bằng cách đưa về phương trình tích:

Đề bài

Giải phương trình sau bằng cách đưa về phương trình tích: \({x^3} + 3{x^2} + 2x = 0\)

Phương pháp giải - Xem chi tiết

+ Đặt nhân tử chung \(x\) ra ngoài để đưa phương trình về dạng

\(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)

+ Giải phương trình bậc hai \(ax^2+bx+c=0\) bằng công thức nghiệm hoặc sử dụng nếu \(a-b+c=0\) thì phương trình có hai nghiệm \(x=-1;x=-\dfrac {c}{a}\).

Lời giải chi tiết

Ta có \({x^3} + 3{x^2} + 2x = 0 \Leftrightarrow x\left( {{x^2} + 3x + 2} \right) = 0\)

\( \Leftrightarrow x = 0\) hoặc \({x^2} + 3{x} + 2 = 0\)   (1)

Phương trình (1) là phương trình bậc hai có \(a-b+c=1-3+2=0\) nên có hai nghiệm  \(x = -1; x = -\dfrac{c}{a}=-2\)

Vậy phương trình đã cho có 3 nghiệm \(x = 0; x = -1; x = -2\)


Cùng chủ đề:

Trả lời câu hỏi 3 Bài 5 trang 21 SGK toán 9 tập 2
Trả lời câu hỏi 3 Bài 5 trang 49 Toán 9 Tập 2
Trả lời câu hỏi 3 Bài 6 trang 25 SGK Toán 9 Tập 1
Trả lời câu hỏi 3 Bài 6 trang 51 Toán 9 Tập 2
Trả lời câu hỏi 3 Bài 6 trang 114 SGK Toán 9 Tập 1
Trả lời câu hỏi 3 Bài 7 trang 56 Toán 9 Tập 2
Trả lời câu hỏi 3 Bài 8 trang 32 SGK Toán 9 Tập 1
Trả lời câu hỏi 3 Bài 8 trang 122 SGK Toán 9 Tập 1
Trả lời câu hỏi 4 Bài 1 trang 6 SGK Toán 9 Tập 1
Trả lời câu hỏi 4 Bài 1 trang 30 Toán 9 Tập 2
Trả lời câu hỏi 4 Bài 2 trang 47 SGK Toán 9 Tập 1