Trả lời câu hỏi 3 Bài 8 trang 32 SGK Toán 9 Tập 1 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 8. Rút gọn biểu thức chứa căn bậc hai


Trả lời câu hỏi 3 Bài 8 trang 32 SGK Toán 9 Tập 1

Rút gọn các biểu thức sau:

Rút gọn các biểu thức sau:

LG a

\(\displaystyle {{{x^2} - 3} \over {x + \sqrt 3 }}\)

Phương pháp giải:

+ Phân tích tử thức và mẫu thức thành nhân tử (nếu có thể) để xuất hiện nhân tử chung và rút gọn phân thức.

+ Chú ý sử dụng hằng đẳng thức: \(a^2-b^2=(a-b)(a+b)\)

Lời giải chi tiết:

\(\eqalign{& {{{x^2} - 3} \over {x + \sqrt 3 }} = {{\left( {x + \sqrt 3 } \right)\left( {x - \sqrt 3 } \right)} \over {x + \sqrt 3 }} = x-\sqrt 3 \cr} \)

LG b

\(\displaystyle {{1 - a\sqrt a } \over {1 - \sqrt a }}\) với \(a \ge 0;\,\,a \ne 1\)

Phương pháp giải:

+ Phân tích tử thức và mẫu thức thành nhân tử (nếu có thể) để xuất hiện nhân tử chung và rút gọn phân thức.

+ Chú ý sử dụng hằng đẳng thức: \( a^3-b^3=(a-b)(a^2+ab+b^2)\)

Lời giải chi tiết:

\(\eqalign{& {{1 - a\sqrt a } \over {1- \sqrt a }} = {{1 - {{\left( {\sqrt a } \right)}^3}} \over {1 - \sqrt a }} \cr & = {{\left( {1 - \sqrt a } \right)\left( {1 + \sqrt a  + a} \right)} \over {1 - \sqrt a }}  \cr &  = a + \sqrt a  + 1 \cr} \)


Cùng chủ đề:

Trả lời câu hỏi 3 Bài 5 trang 49 Toán 9 Tập 2
Trả lời câu hỏi 3 Bài 6 trang 25 SGK Toán 9 Tập 1
Trả lời câu hỏi 3 Bài 6 trang 51 Toán 9 Tập 2
Trả lời câu hỏi 3 Bài 6 trang 114 SGK Toán 9 Tập 1
Trả lời câu hỏi 3 Bài 7 trang 56 Toán 9 Tập 2
Trả lời câu hỏi 3 Bài 8 trang 32 SGK Toán 9 Tập 1
Trả lời câu hỏi 3 Bài 8 trang 122 SGK Toán 9 Tập 1
Trả lời câu hỏi 4 Bài 1 trang 6 SGK Toán 9 Tập 1
Trả lời câu hỏi 4 Bài 1 trang 30 Toán 9 Tập 2
Trả lời câu hỏi 4 Bài 2 trang 47 SGK Toán 9 Tập 1
Trả lời câu hỏi 4 Bài 2 trang 74 SGK Toán 9 Tập 1