Processing math: 100%

Trắc nghiệm toán 6 bài 24 kết nối tri thức có đáp án — Không quảng cáo

Bài tập trắc nghiệm Toán 6 - Kết nối tri thức có đáp án Bài tập trắc nghiệm Chương 6: Phân số


Trắc nghiệm Bài 24: So sánh phân số Toán 6 Kết nối tri thức

Đề bài

Câu 1 :

Điền dấu thích hợp vào chỗ chấm: 513713

  • A.

    >

  • B.

    <

  • C.

    =

  • D.

    Tất cả các đáp án trên đều sai

Câu 2 :

Quy đồng mẫu số hai phân số 27;58được hai phân số lần lượt là:

  • A.

    1656;3556

  • B.

    1656;3556

  • C.

    1656;3556

  • D.

    1656;3556

Câu 3 :

Qui đồng mẫu số các phân số 1112;1516;2320 ta được các phân số lần lượt là

  • A.

    220240;225240;276240

  • B.

    225240;220240;276240

  • C.

    225240;276240;220240

  • D.

    220240;276240;225240

Câu 4 :

Chọn câu đúng.

  • A.

    11231125>1

  • B.

    154156<1

  • C.

    123345>0

  • D.

    657324<0

Câu 5 :

Sắp xếp các phân số 2940;2841;2941 theo thứ tự tăng dần ta được

  • A.

    2941;2841;2940

  • B.

    2940;2941;2841

  • C.

    2841;2941;2940

  • D.

    2841;2940;2941

Câu 6 :

Chọn câu đúng:

  • A.

    1112<2212

  • B.

    83<93

  • C.

    78<98

  • D.

    65<45

Câu 7 :

Chọn câu đúng:

  • A.

    67<87<77

  • B.

    922<1322<1822

  • C.

    715<815<415

  • D.

    511>711>411

Câu 8 :

Chọn số thích hợp điền vào chỗ trống sau: 723<...23

  • A.

    9

  • B.

    7

  • C.

    5

  • D.

    4

Câu 9 :

Em hãy sắp xếp các phân số sau theo thứ tự giảm dần: 14;23;12;43;52

  • A.

    43>52>23>12>14

  • B.

    52>43>23>12>14

  • C.

    52>43>23>14>12

  • D.

    43>52>23>14>12

Câu 10 :

Lớp 6A có 935 số học sinh thích bóng bàn, 25 số học sinh thích bóng chuyền, 47 số học sinh thích bóng đá. Môn bóng nào được các bạn học sinh lớp 6A yêu thích nhất?

  • A.

    Môn bóng bàn.

  • B.

    Môn bóng chuyền.

  • C.

    Môn bóng đá.

  • D.

    Cả 3 môn bóng được các bạn yêu thích như nhau.

Câu 11 :

Phân số ab là phân số tối giản khi ƯC(a;b) bằng

  • A.

    {1;1}

  • B.

    {2}

  • C.

    {1;2}

  • D.

    {1;2;3}

Câu 12 :

Phân số nào dưới đây là phân số tối giản?

  • A.

    24

  • B.

    1596

  • C.

    1327

  • D.

    2958

Câu 13 :

Rút gọn phân số 600800 về dạng phân số tối giản ta được:

  • A.

    12

  • B.

    68

  • C.

    34

  • D.

    34

Câu 14 :

Rút gọn phân số (2).3+6.59.6 về dạng phân số tối giản ta được phân số có tử số là

  • A.

    49

  • B.

    31

  • C.

    1

  • D.

    4

Câu 15 :

Rút gọn phân số 4.864.(7) ta được phân số tối giản là:

  • A.

    17

  • B.

    114

  • C.

    456

  • D.

    170

Câu 16 :

Phân số nào sau đây là kết quả của biểu thức 2.9.5222.(72) sau khi rút gọn đến tối giản?

  • A.

    1322

  • B.

    1322

  • C.

    1318

  • D.

    117198

Lời giải và đáp án

Câu 1 :

Điền dấu thích hợp vào chỗ chấm: 513713

  • A.

    >

  • B.

    <

  • C.

    =

  • D.

    Tất cả các đáp án trên đều sai

Đáp án : A

Phương pháp giải :

Áp dụng quy tắc so sánh hai phân số có cùng mẫu số dương: phân số nào có tử số nhỏ (lớn) hơn thì nhỏ (lớn) hơn.

Lời giải chi tiết :

5>7 nên 513>713

Câu 2 :

Quy đồng mẫu số hai phân số 27;58được hai phân số lần lượt là:

  • A.

    1656;3556

  • B.

    1656;3556

  • C.

    1656;3556

  • D.

    1656;3556

Đáp án : A

Phương pháp giải :

Đưa các phân số về có mẫu dương hết rồi quy đồng mẫu số các phân số.

+) Tìm MSC (thường là BCNN  của các mẫu).

+) Tìm thừa số phụ =MSC:MS

+) Nhân cả tử và mẫu với thừa số phụ tương ứng

Lời giải chi tiết :

Ta quy đồng 2758 (MSC:56)

27=2.87.8=1656; 58=5.78.7=3556

Câu 3 :

Qui đồng mẫu số các phân số 1112;1516;2320 ta được các phân số lần lượt là

  • A.

    220240;225240;276240

  • B.

    225240;220240;276240

  • C.

    225240;276240;220240

  • D.

    220240;276240;225240

Đáp án : A

Phương pháp giải :

Bước 1: Tìm mẫu số chung (MSC) của ba phân số trên: Có thể chọn MSC=BCNN(16,12,20) Bước 2: Tìm thừa số phụ tương ứng bằng cách lấy MSC  chia mẫu số riêng của mỗi phân số Bước 3: Quy đồng mẫu bằng cách nhân cả tử số mà mẫu số của mỗi phân số với thừa số phụ tương ứng

Lời giải chi tiết :

Ta có: 12=22.3;16=24;20=22.5

Do đó MSC=24.3.5=240

1112=11.2012.20=220240;1516=15.1516.15=225240;2320=23.1220.12=276240

Vậy các phân số sau khi quy đồng lần lượt là: 220240;225240;276240

Câu 4 :

Chọn câu đúng.

  • A.

    11231125>1

  • B.

    154156<1

  • C.

    123345>0

  • D.

    657324<0

Đáp án : B

Phương pháp giải :

Xét tính đúng sai của từng đáp án, chú ý:

- Phân số dương luôn lớn hơn 0

- Phân số âm luôn nhỏ hơn 0

- Phân số có tử số và mẫu số là các số nguyên dương mà tử số nhỏ hơn mẫu số thì nhỏ hơn 1, tử số lớn hơn mẫu số thì lớn hơn 1

Lời giải chi tiết :

Đáp án A: Vì 1123<1125 nên 11231125<1

A sai.

Đáp án B: 154156=154156

154<156 nên 154156<1 hay 154156<1

B đúng.

Đáp án C: 123345<0 vì nó là phân số âm.

C sai.

Đáp án D: 657324>0 vì nó là phân số dương.

D sai.

Câu 5 :

Sắp xếp các phân số 2940;2841;2941 theo thứ tự tăng dần ta được

  • A.

    2941;2841;2940

  • B.

    2940;2941;2841

  • C.

    2841;2941;2940

  • D.

    2841;2940;2941

Đáp án : C

Phương pháp giải :

Sử dụng quy tắc so sánh hai phân số cùng mẫu, cùng tử và tính chất bắc cầu:

- Hai phân số cùng mẫu, phân số có tử số lớn hơn (nhỏ hơn) thì lớn hơn (nhỏ hơn)

- Hai phân số cùng tử, phân số có mẫu số lớn hơn (nhỏ hơn) thì nhỏ hơn (lớn hơn)

- Tính chất bắc cầu: a<b;b<ca<b<c

Lời giải chi tiết :

Ta có:

+) 28<29 nên 2841<2941

+) 41>40 nên 2941<2940

Do đó 2841<2941<2940

Câu 6 :

Chọn câu đúng:

  • A.

    1112<2212

  • B.

    83<93

  • C.

    78<98

  • D.

    65<45

Đáp án : C

Phương pháp giải :

Trong hai phân số có cùng một mẫu dương, phân số nào có tử lớn hơn thì phân số đó lớn hơn.

Lời giải chi tiết :

11>(22) nên 1112>2212

8>(9) nên 83>93

7<9 nên 78<98

6>4 nên 65>45.

Câu 7 :

Chọn câu đúng:

  • A.

    67<87<77

  • B.

    922<1322<1822

  • C.

    715<815<415

  • D.

    511>711>411

Đáp án : B

Phương pháp giải :

Trong hai phân số có cùng một mẫu dương, phân số nào có tử lớn hơn thì phân số đó lớn hơn.

Lời giải chi tiết :

6<7<8 nên 67<77<87

9<13<18 nên 922<1322<1822.

4<7<8 nên 415<715<815

4<5<7 nên 411<511<711

Câu 8 :

Chọn số thích hợp điền vào chỗ trống sau: 723<...23

  • A.

    9

  • B.

    7

  • C.

    5

  • D.

    4

Đáp án : A

Phương pháp giải :

Trong hai phân số có cùng một mẫu dương, phân số nào có tử lớn hơn thì phân số đó lớn hơn.

Lời giải chi tiết :

7<9 nên 723<923.

Câu 9 :

Em hãy sắp xếp các phân số sau theo thứ tự giảm dần: 14;23;12;43;52

  • A.

    43>52>23>12>14

  • B.

    52>43>23>12>14

  • C.

    52>43>23>14>12

  • D.

    43>52>23>14>12

Đáp án : B

Phương pháp giải :

So sánh các phân số với 1;2

Quy đồng mẫu số để so sánh các phân số nhỏ hơn 1.

Lời giải chi tiết :

Ta có: các phân số có tử số nhỏ hơn mẫu số là các phân số nhỏ hơn 1 là: 14;23;12

Quy đồng chung mẫu số các phân số này, ta được: 14=312;23=812; 12=612

Nhận thấy: 312<612<812 suy ra 14<12<23

Các phân số lớn hơn , nhỏ hơn là

Phân số lớn hơn 1 nhỏ hơn 2 là: 43

Phân số lớn hơn 2 là: 52

Như vậy, sắp xếp các phân số theo thứ tự giảm dần là:

52>43>23>12>14.

Câu 10 :

Lớp 6A có 935 số học sinh thích bóng bàn, 25 số học sinh thích bóng chuyền, 47 số học sinh thích bóng đá. Môn bóng nào được các bạn học sinh lớp 6A yêu thích nhất?

  • A.

    Môn bóng bàn.

  • B.

    Môn bóng chuyền.

  • C.

    Môn bóng đá.

  • D.

    Cả 3 môn bóng được các bạn yêu thích như nhau.

Đáp án : C

Phương pháp giải :

So sánh các phân số từ đó suy ra môn được yêu thích nhất.

Lời giải chi tiết :

Ta có:

25=1435;47=2035

935<1435<2035

935<25<47

Vậy môn bóng đá được các bạn lớp 6A yêu thích nhất.

Câu 11 :

Phân số ab là phân số tối giản khi ƯC(a;b) bằng

  • A.

    {1;1}

  • B.

    {2}

  • C.

    {1;2}

  • D.

    {1;2;3}

Đáp án : A

Lời giải chi tiết :

Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà cả tử và mẫu chỉ có ước chung là 1  và 1.

Câu 12 :

Phân số nào dưới đây là phân số tối giản?

  • A.

    24

  • B.

    1596

  • C.

    1327

  • D.

    2958

Đáp án : C

Phương pháp giải :

Định nghĩa phân số tối giản:

Phân số tối giản (hay phân số không rút gọn được nữa) là phân số mà cả tử và mẫu chỉ có ước chung là 1  và 1.

Do đó ta chỉ cần tìm ƯCLN của giá trị tuyệt đối của tử và mẫu phân số, nếu ƯCLN  đó là 1 thì phân số đã cho tối giản.

Lời giải chi tiết :

Đáp án A: ƯCLN(2;4)=21 nên loại.

Đáp án B: ƯCLN(15;96)=31 nên loại.

Đáp án C: ƯCLN(13;27)=1 nên C đúng.

Đáp án D: ƯCLN(29;58)=291 nên D sai.

Câu 13 :

Rút gọn phân số 600800 về dạng phân số tối giản ta được:

  • A.

    12

  • B.

    68

  • C.

    34

  • D.

    34

Đáp án : C

Phương pháp giải :

- Chia cả tử và mẫu của phân số ab cho ƯCLN của |a||b| để rút gọn phân số tối giản.

Lời giải chi tiết :

Ta có: ƯCLN(600,800)=200 nên:

600800=600:200800:200=34

Câu 14 :

Rút gọn phân số (2).3+6.59.6 về dạng phân số tối giản ta được phân số có tử số là

  • A.

    49

  • B.

    31

  • C.

    1

  • D.

    4

Đáp án : D

Phương pháp giải :

- Tính tử và mẫu của phân số đã cho và rút gọn phân số đó.

Lời giải chi tiết :

Ta có:

(2).3+6.59.6=6+3054 =2454=24:654:6=49

Vậy tử số của phân số cần tìm là 4

Câu 15 :

Rút gọn phân số 4.864.(7) ta được phân số tối giản là:

  • A.

    17

  • B.

    114

  • C.

    456

  • D.

    170

Đáp án : B

Phương pháp giải :

Tách các thừa số ở tử và mẫu thành tích các thừa số nhỏ hơn rồi chia cả tử và mẫu cho các thừa số chung.

Lời giải chi tiết :

Ta có:

4.864.(7)=4.82.4.8.(7)=12.(7)=114

Câu 16 :

Phân số nào sau đây là kết quả của biểu thức 2.9.5222.(72) sau khi rút gọn đến tối giản?

  • A.

    1322

  • B.

    1322

  • C.

    1318

  • D.

    117198

Đáp án : A

Phương pháp giải :

- Phân tích các thừa số trong tích ở cả tử và mẫu thành tích các thừa số nguyên tố.

- Chia cả tử và mẫu của biểu thức cho từng lũy thừa chung ở tử và mẫu mà có số mũ nhỏ hơn.

Lời giải chi tiết :

2.9.5222.(72)=2.32.22.132.11.(23.32)=23.32.1324.32.11=132.11=1322


Cùng chủ đề:

Trắc nghiệm toán 6 bài 20 kết nối tri thức có đáp án
Trắc nghiệm toán 6 bài 21 kết nối tri thức có đáp án
Trắc nghiệm toán 6 bài 22 kết nối tri thức có đáp án
Trắc nghiệm toán 6 bài 23 kết nối tri thức có đáp án
Trắc nghiệm toán 6 bài 24 (tiếp) kết nối tri thức có đáp án
Trắc nghiệm toán 6 bài 24 kết nối tri thức có đáp án
Trắc nghiệm toán 6 bài 25 kết nối tri thức có đáp án
Trắc nghiệm toán 6 bài 26 kết nối tri thức có đáp án
Trắc nghiệm toán 6 bài 27 kết nối tri thức có đáp án
Trắc nghiệm toán 6 bài 28 kết nối tri thức có đáp án
Trắc nghiệm toán 6 bài 29 kết nối tri thức có đáp án