Trắc nghiệm Bài 5: Thứ tự thực hiện các phép tính Toán 6 Chân trời sáng tạo
Đề bài
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?
-
A.
Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa
-
B.
Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ
-
C.
Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ
-
D.
Cả ba đáp án A,B,C đều đúng
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?
-
A.
\(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)
-
B.
\(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
-
C.
\(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)
-
D.
\(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)
Tính: \(1 + 12.3.5\)
-
A.
181
-
B.
195
-
C.
180
-
D.
15
Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là
-
A.
$100$
-
B.
$95$
-
C.
$105$
-
D.
$80$
Giá trị của biểu thức \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\) bằng
-
A.
$140$
-
B.
$60$
-
C.
$80$
-
D.
$40$
Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là
-
A.
$319$
-
B.
$931$
-
C.
$193$
-
D.
$391$
Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).
-
A.
$x = 7$
-
B.
$x = 8$
-
C.
$x = 9$
-
D.
$x = 10$
Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)
-
A.
6
-
B.
3
-
C.
2
-
D.
1
Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:
-
A.
$9$
-
B.
$10$
-
C.
$11$
-
D.
$12$
Lời giải và đáp án
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?
-
A.
Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa
-
B.
Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ
-
C.
Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ
-
D.
Cả ba đáp án A,B,C đều đúng
Đáp án : C
Đối với biểu thức không có dấu ngoặc thì thứ tự thực hiện phép tính đúng là : Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức có dấu ngoặc?
-
A.
\(\left[ {} \right] \to \left( {} \right) \to \left\{ {} \right\}\)
-
B.
\(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
-
C.
\(\left\{ {} \right\} \to \left[ {} \right] \to \left( {} \right)\)
-
D.
\(\left[ {} \right] \to \left\{ {} \right\} \to \left( {} \right)\)
Đáp án : B
Nếu biểu thức có các dấu ngoặc : ngoặc tròn ( ), ngoặc vuông [ ], ngoặc nhọn { }, ta thực hiện phép tính theo thứ tự : \(\left( {} \right) \to \left[ {} \right] \to \left\{ {} \right\}\)
Tính: \(1 + 12.3.5\)
-
A.
181
-
B.
195
-
C.
180
-
D.
15
Đáp án : A
Thực hiện theo quy tắc:
N hân và chia \( \to \) cộng và trừ.
\(1 + 12.3.5 = 1+\left( {12.3} \right).5 = 1 + 36.5 = 1 + 180 = 181\)
Kết quả của phép toán \({2^4} - 50:25 + 13.7\) là
-
A.
$100$
-
B.
$95$
-
C.
$105$
-
D.
$80$
Đáp án : C
Thực hiện phép tính nâng lên lũy thừa rồi đến nhân chia cuối cùng là cộng trừ.
Ta có \({2^4} - 50:25 + 13.7\)\( = 16 - 2 + 91 = 14 + 91 = 105\)
Giá trị của biểu thức \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\) bằng
-
A.
$140$
-
B.
$60$
-
C.
$80$
-
D.
$40$
Đáp án : D
Thực hiện phép tính trong ngoặc tròn rồi đến ngoặc vuông. Sau đó là phép nhân và phép trừ.
Ta có \(2\left[ {\left( {195 + 35:7} \right):8 + 195} \right] - 400\)
\( = 2\left[ {\left( {195 + 5} \right):8 + 195} \right] - 400\)
\( = 2\left[ {200:8 + 195} \right] - 400\)
\( = 2\left( {25 + 195} \right) - 400\)
\( = 2.220 - 400\)
\( = 440 - 400\)
\( = 40\)
Kết quả của phép tính \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\) là
-
A.
$319$
-
B.
$931$
-
C.
$193$
-
D.
$391$
Đáp án : D
Thực hiện phép tính trong ngoặc đơn trước rồi tính trong ngoặc vuông.
Sau đó là phép lũy thừa, nhân và trừ các kết quả.
Ta có \({3^4}.6 - \left[ {131 - {{\left( {15 - 9} \right)}^2}} \right]\)
\( = {3^4}.6 - \left( {131 - {6^2}} \right)\)
\( = 81.6 - \left( {131 - 36} \right)\)
\( = 486 - 95 = 391.\)
Tìm \(x\) thỏa mãn \(165 - \left( {35:x + 3} \right).19 = 13\).
-
A.
$x = 7$
-
B.
$x = 8$
-
C.
$x = 9$
-
D.
$x = 10$
Đáp án : A
Dựa vào mối quan hệ giữa số hạng và tổng, giữa số bị trừ, số trừ và hiệu hoặc giữa thừa số và tích để tìm $x$.
\(\begin{array}{l}165 - \left( {35:x + 3} \right).19 = 13\\\left( {35:x + 3} \right).19\, = 165 - 13\\\left( {35:x + 3} \right).19 = 152\\35:x + 3 = 152:19\\35:x + 3\, = 8\\35:x\, = 8 - 3\\35:x\,\, = 5\\x\, = 35:5\\x = 7.\end{array}\)
Tính \(3.\left( {{2^3}.4 - 6.5} \right)\)
-
A.
6
-
B.
3
-
C.
2
-
D.
1
Đáp án : A
Thực hiện phép tính trong ngoặc tròn ( ) trước: Lũy thừa \( \to \) nhân và chia \( \to \) cộng và trừ.
Lấy kết quả trong ngoặc nhân với 3.
\(3.\left( {{2^3}.4 - 6.5} \right) = 3.\left( {8.4 - 6.5} \right)\)\( = 3.\left( {32 - 30} \right) = 3.2 = 6\)
Số tự nhiên $x$ cho bởi : \(5(x + 15) = {5^3}\) . Giá trị của $x$ là:
-
A.
$9$
-
B.
$10$
-
C.
$11$
-
D.
$12$
Đáp án : B
+ Tính vế phải sau đó tìm thừa số chưa biết bằng cách lấy tích chia cho thừa số đã biết.
+ Sử dụng mối quan hệ giữa số hạng và tổng để tìm $x$
\(\begin{array}{l}5(x + 15) = {5^3}\\5(x + 15) = 125\\x + 15 = 125:5\\x + 15\, = 25\\x\,\, = 25 - 15\\x\, = 10.\end{array}\)