Bài 1 trang 6 SGK Toán 9 tập 1 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 1. Căn bậc hai


Bài 1 trang 6 SGK Toán 9 tập 1

Tìm căn bậc hai số học của mỗi số sau...

Đề bài

Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng

121;   144;   169;   225;  256;  324;   361;   400.

Phương pháp giải - Xem chi tiết

+) Căn bậc hai số học của \(a\) là \( \sqrt{a} \) với \(a>0\).

+) Số dương \(a\) có đúng hai căn bậc hai là hai số đối nhau: Số dương kí hiệu là \( \sqrt{a}\) và số âm kí hiệu là \(- \sqrt{a}\).

Lời giải chi tiết

Ta có:

+ \(\sqrt{121}\) có căn bậc hai số học là \(11\) (vì \(11>0\) và \(11^2=121\) )

\(\Rightarrow 121\) có hai căn bậc hai là \(11\) và \(-11\).

+ \(\sqrt{144}\) có căn bậc hai số học là \(12\) (vì \(12>0\) và \(12^2=144\) )

\(\Rightarrow 144\) có hai căn bậc hai là \(12\) và \(-12\).

+ \(\sqrt{169}\) có căn bậc hai số học là \(13\) (vì \(13>0\) và \(13^2=169\) )

\(\Rightarrow 169\) có hai căn bậc hai là \(13\) và \(-13\).

+ \(\sqrt{225}\) có căn bậc hai số học là \(15\) (vì \(15>0\) và \(15^2=225\) )

\(\Rightarrow 225\) có hai căn bậc hai là \(15\) và \(-15\).

+ \(\sqrt{256}\) có căn bậc hai số học là \(16\) (vì \(16>0\) và \(16^2=256\) )

\(\Rightarrow 256\) có hai căn bậc hai là \(16\) và \(-16\).

+ \(\sqrt{324}\) có căn bậc hai số học là \(18\) (vì \(18>0\) và \(18^2=324\) )

\(\Rightarrow 324 \) có hai căn bậc hai là \(18\) và \(-18\).

+ \(\sqrt{361}\) có căn bậc hai số học là \(19\) (vì \(19>0\) và \(19^2=361\) )

\(\Rightarrow 361\) có hai căn bậc hai là \(19\) và \(-19\).

+ \(\sqrt{400}\) có căn bậc hai số học là \(20\) (vì \(20>0\) và \(20^2=400\) )

\(\Rightarrow 400 \) có hai căn bậc hai là \(20\) và \(-20\).


Cùng chủ đề:

Bài 1 trang 6 SGK Toán 9 tập 1
Bài 1 trang 7 SGK Toán 9 tập 2
Bài 1 trang 30 SGK Toán 9 tập 2
Bài 1 trang 44 SGK Toán 9 tập 1
Bài 1 trang 68 SGK Toán 9 tập 1
Bài 1 trang 68 SGK Toán 9 tập 2