Bài 11 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài tập cuối chương 4 Toán 11 Chân trời sáng tạo


Bài 11 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo

Cho mặt phẳng \(\left( \alpha \right)\) và hai đường thẳng chéo nhau \(a,b\) cắt \(\left( \alpha \right)\) tại \(A\) và \(B\). Gọi \(d\) là đường thẳng thay đổi luôn luôn song song với \(\left( \alpha \right)\) và cắt \(a\) tại \(M\), cắt \(b\) tại \(N\). Qua điểm \(N\) dựng đường thẳng song song với \(a\) cắt \(\left( \alpha \right)\) tại điểm \(C\).

Đề bài

Cho mặt phẳng \(\left( \alpha  \right)\) và hai đường thẳng chéo nhau \(a,b\) cắt \(\left( \alpha  \right)\) tại \(A\) và \(B\). Gọi \(d\) là đường thẳng thay đổi luôn luôn song song với \(\left( \alpha  \right)\) và cắt \(a\) tại \(M\), cắt \(b\) tại \(N\). Qua điểm \(N\) dựng đường thẳng song song với \(a\) cắt \(\left( \alpha  \right)\) tại điểm \(C\).

a) Tứ giác \(MNCA\) là hình gì?

b) Chứng minh rằng điểm \(C\) luôn luôn chạy trên một đường thẳng cố định.

c) Xác định vị trí của đường thẳng \(d\) để độ dài \(MN\) nhỏ nhất.

Phương pháp giải - Xem chi tiết

Sử dụng hệ quả: Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì giao tuyến của chúng (nếu có) song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.

Lời giải chi tiết

a) Ta có:

\(\left. \begin{array}{l}d \subset \left( {AMNC} \right)\\d\parallel \left( \alpha  \right)\\\left( \alpha  \right) \cap \left( {AMNC} \right) = AC\end{array} \right\} \Rightarrow d\parallel AC \Rightarrow MN\parallel AC\)

Mà \(a\parallel NC \Rightarrow MA\parallel NC\)

\( \Rightarrow AMNC\) là hình bình hành.

b) Gọi \(\left( \beta  \right)\) là mặt phẳng chứa \(b\) và song song với \(a\), \(c = \left( \alpha  \right) \cap \left( \beta  \right)\)

Ta có:

\(\left. \begin{array}{l}NC\parallel a\\N \in b\end{array} \right\} \Rightarrow NC \subset \left( \beta  \right)\)

\( \Rightarrow C \in \left( \alpha  \right) \cap \left( \beta  \right) \Rightarrow C \in c\)

Vậy điểm \(C\) luôn luôn chạy trên đường thẳng \(c\) là giao tuyến của \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) cố định.

c) Trong mặt phẳng \(\left( \alpha  \right)\), kẻ \(AH \bot c\)

Vì \(c\) cố định nên \(AC \ge AH\)

\(AMNC\) là hình bình hành \( \Rightarrow MN = AC\)

Vậy \(MN \ge AH\)

Vậy \(MN\) nhỏ nhất khi \(C \equiv H\). Khi đó \(d\parallel AH\).


Cùng chủ đề:

Bài 11 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 11 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 11 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 11 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 11 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 11 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 12 trang 35 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 12 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 12 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 12 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo