Bài 12 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài tập cuối chương 3 Toán 11 Chân trời sáng tạo


Bài 12 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 25}}{{x - 5}}}&{khi\,\,x \ne 5}\\a&{khi\,\,x = 5}\end{array}} \right.\).

Đề bài

Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - 25}}{{x - 5}}}&{khi\,\,x \ne 5}\\a&{khi\,\,x = 5}\end{array}} \right.\).

Tìm \(a\) để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

Phương pháp giải - Xem chi tiết

Bước 1: Xét tính liên tục của hàm số trên từng khoảng xác định.

Bước 2: Tính \(f\left( {{x_0}} \right)\).

Bước 3: Tính \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\).

Bước 4: Giải phương trình \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\) để tìm \(a\).

Lời giải chi tiết

Trên các khoảng \(\left( { - \infty ;5} \right)\) và \(\left( {5; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 25}}{{x - 5}}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;5} \right)\) và \(\left( {5; + \infty } \right)\).

Ta có: \(f\left( 5 \right) = a\)

\(\mathop {\lim }\limits_{x \to 5} f\left( x \right) = \mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \frac{{\left( {x - 5} \right)\left( {x + 5} \right)}}{{x - 5}} = \mathop {\lim }\limits_{x \to 5} \left( {x + 5} \right) = 5 + 5 = 10\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 5\).  Khi đó: \(\mathop {\lim }\limits_{x \to 5} f\left( x \right) = f\left( 5 \right) \Leftrightarrow a = 10\).

Vậy với \(a = 10\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).


Cùng chủ đề:

Bài 11 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 12 trang 35 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 12 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 12 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 12 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 12 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 12 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 12 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 13 trang 35 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 13 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo