Bài 12 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài tập cuối chương VIII Toán 11 Chân trời sáng tạo


Bài 12 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo

Một chân cột bằng gang có dạng hình chóp cụt tứ giác đều có cạnh đáy lớn bằng \(2a\)

Đề bài

Một chân cột bằng gang có dạng hình chóp cụt tứ giác đều có cạnh đáy lớn bằng \(2a\), cạnh đáy nhỏ bằng \(a\), chiều cao \(h = 2a\) và bán kính đáy phần trụ rỗng bên trong bằng \(\frac{a}{2}\).

a) Tìm góc phẳng nhị diện tạo bởi mặt bên và mặt đáy.

b) Tính thể tích chân cột nói trên theo \(a\).

Phương pháp giải - Xem chi tiết

‒ Cách xác định góc phẳng nhị diện \(\left[ {A,d,B} \right]\): Dựng mặt phẳng \(\left( P \right)\) vuông góc với \(d\), gọi \(a,a'\) lần lượt là giao tuyến của \(\left( P \right)\) với hai nửa mặt phẳng chứa \(A,B\), khi đó \(\left[ {A,d,B} \right] = \left( {a,a'} \right)\).

‒ Sử dụng công thức tính thể tích khối chóp cụt đều: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'}  + S'} \right)\).

‒ Sử dụng công thức tính thể tích khối trụ: \(V = \pi {R^2}h\).

Lời giải chi tiết

Mô hình hoá chân cột bằng gang bằng cụt chóp tứ giác đều \(ABCD.A'B'C'D'\) với \(O,O'\) là tâm của hai đáy. Vậy \(AB = 2{\rm{a}},A'B' = a,OO' = 2a\).

Gọi \(M,M'\) lần lượt là trung điểm của \(CD,C'D'\).

\(A'B'C'{\rm{D}}'\) là hình vuông \( \Rightarrow O'M' \bot C'{\rm{D}}'\)

\(CDD'C'\) là hình thang cân \( \Rightarrow MM' \bot C'D'\)

Vậy \(\widehat {MM'O'}\) là góc phẳng nhị diện giữa mặt bên và đáy nhỏ, \(\widehat {M'MO}\) là góc phẳng nhị diện giữa mặt bên và đáy lớn.

Kẻ \(M'H \bot OM\left( {H \in OM} \right)\)

\(OMM'O'\) là hình chữ nhật

\( \Rightarrow OH = O'M' = \frac{a}{2},OM = a,MH = OM - OH = \frac{{\rm{a}}}{2}\)

\(\begin{array}{l}\tan \widehat {M'MO} = \frac{{M'H}}{{MH}} = 4\\ \Rightarrow \widehat {M'MO} = 75,{96^ \circ } \Rightarrow \widehat {MM'O'} = {180^ \circ } - \widehat {M'MO} = 104,{04^ \circ }\end{array}\)

b) Diện tích đáy lớn là: \(S = A{B^2} = 4{{\rm{a}}^2}\)

Diện tích đáy bé là: \(S' = A'B{'^2} = {a^2}\)

Thể tích hình chóp cụt là: \({V_1} = \frac{1}{3}h\left( {S + \sqrt {SS'}  + S'} \right) = \frac{1}{3}.2a\left( {4{{\rm{a}}^2} + \sqrt {4{{\rm{a}}^2}.{a^2}}  + {a^2}} \right) = \frac{{14{{\rm{a}}^3}}}{3}\)

Thể tích hình trụ rỗng là: \({V_2} = \pi {R^2}h = \pi .{\left( {\frac{a}{2}} \right)^2}.2{\rm{a}} = \frac{{\pi {a^3}}}{2}\)

Thể tích chân cột là: \(V = {V_1} - {V_2} = \left( {\frac{{14}}{3} - \frac{\pi }{2}} \right){a^3}\).


Cùng chủ đề:

Bài 12 trang 35 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 12 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 12 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 12 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 12 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 12 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 12 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 13 trang 35 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 13 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 13 trang 52 SGK Toán 11 tập 2 - Chân trời sáng tạo