Bài 12 trang 35 SGK Toán 11 tập 2 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài tập cuối chương VI Toán 11 Chân trời sáng tạo


Bài 12 trang 35 SGK Toán 11 tập 2 - Chân trời sáng tạo

Tính giá trị của các biểu thức:

Đề bài

Tính giá trị của các biểu thức:

a) \({\log _2}72 - \frac{1}{2}\left( {{{\log }_2}3 + {{\log }_2}27} \right)\);

b) \({5^{{{\log }_2}40 - {{\log }_2}5}}\);

c) \({3^{2 + {{\log }_9}2}}\).

Phương pháp giải - Xem chi tiết

Sử dụng tính chất của lôgarit.

Lời giải chi tiết

a) \({\log _2}72 - \frac{1}{2}\left( {{{\log }_2}3 + {{\log }_2}27} \right) = {\log _2}72 - \frac{1}{2}{\log _2}\left( {3.27} \right) = {\log _2}72 - \frac{1}{2}{\log _2}81\)

\( = {\log _2}72 - {\log _2}{81^{\frac{1}{2}}} = {\log _2}72 - {\log _2}9 = {\log _2}\frac{{72}}{9} = {\log _2}8 = {\log _2}{2^3} = 3{\log _2}2 = 3\).

b) \({5^{{{\log }_2}40 - {{\log }_2}5}} = {5^{{{\log }_2}\frac{{40}}{5}}} = {5^{{{\log }_2}8}} = {5^{{{\log }_2}{2^3}}} = {5^{3{{\log }_2}2}} = {5^3} = 125\).

c) \({3^{2 + {{\log }_9}2}} = {3^{{{\log }_9}{9^2} + {{\log }_9}2}} = {3^{{{\log }_9}\left( {{9^2}.2} \right)}} = {3^{{{\log }_{{3^2}}}\left( {{9^2}.2} \right)}} = {3^{\frac{1}{2}{{\log }_3}\left( {{9^2}.2} \right)}} = {\left( {{3^{{{\log }_3}\left( {{9^2}.2} \right)}}} \right)^{\frac{1}{2}}} = {\left( {{9^2}.2} \right)^{\frac{1}{2}}} = 9\sqrt 2 \).


Cùng chủ đề:

Bài 11 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 11 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 11 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 11 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 11 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 12 trang 35 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 12 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 12 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 12 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 12 trang 87 SGK Toán 11 tập 2 – Chân trời sáng tạo