Bài 18 trang 16 SGK Toán 9 tập 2 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 3. Giải hệ phương trình bằng phương pháp thế


Bài 18 trang 16 SGK Toán 9 tập 2

Xác định các hệ số a và b, biết rằng hệ phương trình

Đề bài

a) Xác định các hệ số \(a\) và \(b\), biết rằng hệ phương trình

\(\left\{\begin{matrix} 2x + by=-4 & & \\ bx - ay=-5& & \end{matrix}\right.\)

có nghiệm là \((1; -2)\)

b) Cũng hỏi như vậy, nếu hệ phương trình có nghiệm là \((\sqrt{2} - 1; \sqrt{2})\).

Phương pháp giải - Xem chi tiết

a)  Thay \(x=1,\ y=-2\) vào hệ ban đầu ta được hệ hai phương trình bậc nhất hai ẩn \(a,\ b\).

Giải hệ mới ta tìm được  \(a,\ b\).

b) Thay \(x=\sqrt{2} - 1; y=\sqrt{2}\) vào hệ ban đầu ta được hệ hai phương trình bậc nhất hai ẩn \(a,\ b\).

Giải hệ mới ta tìm được  \(a,\ b\).

Lời giải chi tiết

a) Hệ phương trình có nghiệm là \((1; -2)\) khi và chỉ khi \((1; -2)\) thỏa mãn hệ phương trình. Thay \(x=1,\ y=-2\) vào hệ, ta có:

\(\left\{\begin{matrix} 2 - 2b=-4 & & \\ b+2a=-5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2b=6 & & \\ b+2a=-5 & & \end{matrix}\right. \)

\( \Leftrightarrow \left\{\begin{matrix} b=3 & & \\ b+2a=-5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} b=3 & & \\ 3+2a=-5 & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} b=3 & & \\ 2a = -5 - 3& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} b=3 & & \\ 2a = -8& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} b=3 & & \\ a = -4 & & \end{matrix}\right.\)

Vậy \(a=-4,\ b=3\) thì hệ có nghiệm là \((1; -2)\).

b) Thay \(x=\sqrt 2 - 1;\ y= \sqrt 2\) vào hệ phương trình đã cho, ta có:

\(\left\{\begin{matrix} 2(\sqrt{2}-1)+b\sqrt{2}= -4 & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2\sqrt{2}-2+b\sqrt{2}= -4 & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2\sqrt{2}-2+b\sqrt{2}= -4 & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} b\sqrt{2}= -2 - 2\sqrt{2} & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} b= -(2 + \sqrt{2}) & & \\ a\sqrt{2}= -(2 + \sqrt{2})(\sqrt{2}-1)+5& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} b= -(2 + \sqrt{2}) & & \\ a\sqrt{2}= -\sqrt{2}+5& & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a = \dfrac{-2+5\sqrt{2}}{2} & & \\ b = -(2+ \sqrt{2})& & \end{matrix}\right.\)

Vậy \(a = \dfrac{-2+5\sqrt{2}}{2},\ b=-(2+ \sqrt{2})\) thì hệ trên có nghiệm là \((\sqrt 2 -1; \sqrt 2)\).


Cùng chủ đề:

Bài 17 trang 109 SGK Toán 9 tập 1
Bài 17 trang 117 SGK Toán 9 tập 2
Bài 17 trang 133 SGK Toán 9 tập 2
Bài 17 trang 135 SGK Toán 9 tập 2
Bài 18 trang 14 SGK Toán 9 tập 1
Bài 18 trang 16 SGK Toán 9 tập 2
Bài 18 trang 49 SGK Toán 9 tập 2
Bài 18 trang 52 SGK Toán 9 tập 1
Bài 18 trang 75 SGK Toán 9 tập 2
Bài 18 trang 83 SGK Toán 9 tập 1
Bài 18 trang 110 SGK Toán 9 tập 1