Bài 18 trang 52 SGK Toán 9 tập 1 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)


Bài 18 trang 52 SGK Toán 9 tập 1

Biết rằng với x = 4 thì hàm số y = 3x + b có giá trị là 11...

Đề bài

a) Biết rằng với \(x = 4\) thì hàm số \(y = 3x + b\) có giá trị là \(11\). Tìm \(b\). Vẽ đồ thị của hàm số với giá trị \(b\) vừa tìm được.

b) Biết rằng đồ thị của hàm số \(y = ax + 5\) đi qua điểm \(A (-1; 3)\). Tìm a. Vẽ đồ thị của hàm số với giá trị \(a\) vừa tìm được.

Phương pháp giải - Xem chi tiết

a) Thay giá trị của \(x,\ y\) đã biết vào công thức hàm số ta tìm được \(b\).

b) Thay tọa độ điểm \(A\) vào công thức hàm số ta tìm được \(a\).

* Cách vẽ đồ thị hàm số \(y=ax+b,\ (a \ne 0)\): Đồ thị hàm số \(y=ax+b \, \, (a\neq 0)\) là đường thẳng:

+) Cắt trục hoành tại điểm \(A(-\dfrac{b}{a}; \, 0).\)

+) Cắt trục tung tại điểm \(B(0;b).\)

Xác định tọa độ hai điểm \(A\) và \(B\) sau đó kẻ đường thẳng đi qua hai điểm đó ta được đồ thị hàm số  \(y=ax+b \, \, (a\neq 0).\)

Lời giải chi tiết

a)  Thay \(x = 4\)  và  \(y = 11\) vào \(y = 3x +b\), ta được:

\(11 = 3.4 + b\)

\(\Leftrightarrow 11=12+b\)

\(\Leftrightarrow 11- 12 =b\)

\(\Leftrightarrow b=-1\).

Khi đó hàm số đã cho trở thành: \(y = 3x – 1\).

+ Cho \(x=0 \Rightarrow y=3.0 - 1=-1 \Rightarrow A(0; -1)\)

Cho \( y=0  \Rightarrow 0=3.x - 1 \Rightarrow x=\dfrac{1}{3} \Rightarrow B{\left(\dfrac{1}{3}; 0 \right)}\)

Do đó đồ thị hàm số \(y=3x+b\)  là đường thẳng đi qua \(2\) điểm \(A(0;-1)\) và \(B\left( {\dfrac{1}{3};0} \right)\). Ta có hình vẽ sau:

b) Thay \(x= -1 \) thì \(y=3\) vào công thức hàm số \(y=ax+5\), ta được:

\( 3= a.(-1) + 5 \)

\(\Leftrightarrow 3 = -a +5\)

\(\Leftrightarrow a = 5-3\)

\(\Leftrightarrow a = 2\)

Khi đó hàm số đã cho trở thành: \(y = 2x + 5\).

+ Cho \(x = 0 \Rightarrow y = 2.0 +5=5 \Rightarrow A(0; 5)\)

Cho \(y=0 \Rightarrow 0= 2. x +5 \Rightarrow x=\dfrac{-5}{2} \Rightarrow B {\left(-\dfrac{5}{2}; 0 \right)}\)

Do đó đồ thị hàm số là đường thẳng đi qua hai điểm \(A(0; 5)\) và \(B \left( { - \dfrac{5}{2};0} \right)\).


Cùng chủ đề:

Bài 17 trang 133 SGK Toán 9 tập 2
Bài 17 trang 135 SGK Toán 9 tập 2
Bài 18 trang 14 SGK Toán 9 tập 1
Bài 18 trang 16 SGK Toán 9 tập 2
Bài 18 trang 49 SGK Toán 9 tập 2
Bài 18 trang 52 SGK Toán 9 tập 1
Bài 18 trang 75 SGK Toán 9 tập 2
Bài 18 trang 83 SGK Toán 9 tập 1
Bài 18 trang 110 SGK Toán 9 tập 1
Bài 18 trang 117 SGK Toán 9 tập 2
Bài 18 trang 133 SGK Toán 9 tập 2