Bài 20 trang 54 SGK Toán 9 tập 1
Hãy chỉ ra ba cặp đường thẳng cắt nhau và các cặp đường thẳng song song
Đề bài
Hãy chỉ ra ba cặp đường thẳng cắt nhau và các cặp đường thẳng song song với nhau trong số các đường thẳng sau:
a) \(y = 1,5x + 2\); b) \(y = x + 2\);
c) \(y = 0,5x - 3\); d) \(y = x - 3\);
e) \(y = 1,5x - 1\); g) \(y = 0,5x + 3\).
Phương pháp giải - Xem chi tiết
+ Cho hai đường thẳng: \((d)\): \(y=ax+b\), \((a \ne 0)\) và \((d')\): \(y=a'x+b'\) \((a' \ne 0)\). Khi đó:
\((d)\) // \((d') \Leftrightarrow a = a'\) và \(b \ne b'\)
\((d)\) cắt \((d') \Leftrightarrow a \ne a'\)
\((d)\) trùng \((d') \Leftrightarrow a = a'\) và \(b=b'\)
Lời giải chi tiết
Ba cặp đường thẳng song song:
+ \((d_{1})\ y = 1,5x + 2 \Rightarrow a_1=1,5\) và \(b_1=2\)
\((d_{2})\ y = 1,5x - 1 \Rightarrow a_2=1,5\) và \(b_2=-1\)
Vì \(a_1=a_2=1,5,\ b_1 \ne b_2\,(2 \ne -1)\) nên \((d_{1})\) song song với \((d_{2})\).
+ \((d_{3})\ y = x + 2 \Rightarrow a_3=1\) và \(b_3=2\)
\((d_{4})\ y = x - 3 \Rightarrow a_4=1\) và \(b_4=-3\)
Vì \(a_3=a_4=1,\ b_3 \ne b_4\,(2\ne -3)\) nên \((d_{3})\) song song với \((d_{4})\).
+ \((d_{5})\ y = 0,5x - 3 \Rightarrow a_5=0,5\) và \(b_5=-3\)
\((d_{6})\ y = 0,5x + 3 \Rightarrow a_6=0,5\) và \(b_6=3\)
Vì \(a_5=a_6=0,5,\ b_5 \ne b_6\,(-3 \ne 3)\) nên \((d_{5})\) song song với \((d_{6})\).
Ba cặp đường thẳng cắt nhau là:
+ \((d_{1})\ y = 1,5x + 2 \Rightarrow a_1=1,5\)
\((d_{3})\ y = x + 2 \Rightarrow a_3=1\)
Vì \(a_1 \ne a_3\,(1,5 \ne 1)\) nên \((d_{1})\) và \((d_{3})\) cắt nhau.
+ \((d_{5})\ y = 0,5x - 3 \Rightarrow a_5=0,5\)
\((d_{3})\ y = x + 2 \Rightarrow a_3=1\)
Vì \(a_5 \ne a_3 \,(0,5\ne 1)\) nên \((d_{5})\) và \((d_{3})\) cắt nhau.
+ \((d_{1})\ y = 1,5x + 2 \Rightarrow a_1=1,5\)
\((d_{6})\ y = 0,5x + 3 \Rightarrow a_6=0,5\)
Vì \(a_1 \ne a_6\,(1,5 \ne 0,5)\) nên \((d_{1})\) và \((d_{6})\) cắt nhau.