Bài 3 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 3. Cấp số nhân Toán 11 Chân trời sáng tạo


Bài 3 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo

a) Số đo bốn góc của một tứ giác lập thành cấp số nhân. Tìm số đo của bốn góc đó biết rằng số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất.

Đề bài

a) Số đo bốn góc của một tứ giác lập thành cấp số nhân. Tìm số đo của bốn góc đó biết rằng số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất.

b) Viết sáu số xen giữa các số –2 và 256 để được cấp số nhân có tám số hạng. Nếu viết tiếp thì số hạng thứ 15 là bao nhiêu?

Phương pháp giải - Xem chi tiết

Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).

Lời giải chi tiết

a) Giả sử số đo bốn góc của tứ giác lần lượt là \({u_1},{u_1}.q,{u_1}.{q^2},{u_1}.{q^3}\left( {{u_1},q > 0} \right)\).

Tổng số đo bốn góc của một tứ giác bằng \({360^ \circ }\) nên ta có phương trình:

\({u_1} + {u_1}.q + {u_1}.{q^2} + {u_1}.{q^3} = 360 \Leftrightarrow {u_1}\left( {1 + q + {q^2} + {q^3}} \right) = 360\left( 1 \right)\)

Số đo của góc lớn nhất gấp 8 lần số đo của góc nhỏ nhất nên ta có phương trình:

\(\frac{{{u_1}.{q^3}}}{{{u_1}}} = 8 \Leftrightarrow {q^3} = 8 \Leftrightarrow q = 2\left( 2 \right)\)

Thế (2) vào (1) ta có: \({u_1}\left( {1 + 2 + {2^2} + {2^3}} \right) = 360 \Leftrightarrow {u_1} = 24\)

Vậy số đo bốn góc của tứ giác đó là: \({24^ \circ };{24^ \circ }.2 = {48^ \circ };{24^ \circ }{.2^2} = {96^ \circ };{24^ \circ }{.2^3} = {192^ \circ }\).

b) Giả sử cấp số nhân đó có số hạng đầu \({u_1}\) và công bội \(q\).

Theo đề bài ta có: \(\left\{ \begin{array}{l}{u_1} =  - 2\\{u_8} = 256\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} =  - 2\\{u_1}.{q^7} = 256\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} =  - 2\\{q^7} =  - 128\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} =  - 2\\q =  - 2\end{array} \right.\).

Vậy ta cần viết thêm sáu số là:

\( - 2.\left( { - 2} \right) = 4;4.\left( { - 2} \right) =  - 8;\left( { - 8} \right).\left( { - 2} \right) = 16;16.\left( { - 2} \right) =  - 32;\left( { - 32} \right).\left( { - 2} \right) = 64;64.\left( { - 2} \right) =  - 128\)

Số hạng thứ 15 của cấp số nhân là: \({u_{15}} = {u_1}.{q^{14}} =  - 2.{\left( { - 2} \right)^{14}} =  - 32768\).


Cùng chủ đề:

Bài 3 trang 49 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 3 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 3 trang 56 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 3 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 61 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 64 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 3 trang 69 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 3 trang 73 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 3 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo