Bài 4 trang 99 SGK Toán 11 tập 2 - Cánh Diều
Cho một đường thẳng không vuông góc với mặt phẳng cho trước.
Đề bài
Cho một đường thẳng không vuông góc với mặt phẳng cho trước. Chứng minh rằng tồn tại duy nhất một mặt phẳng chứa đường thẳng đó và vuông góc với mặt phẳng đã cho.
Phương pháp giải - Xem chi tiết
Cách chứng minh hai mặt phẳng vuông góc: chứng minh mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
Lời giải chi tiết
Cho đường thẳng \(a\) không vuông góc với mặt phẳng \(\left( Q \right)\). Ta cần chứng minh tồn tại duy nhật mặt phẳng \(\left( P \right)\) chứa đường thẳng \(a\) và vuông góc với mặt phẳng \(\left( Q \right)\).
• Lấy điểm \(A \in a\). Qua điểm \(A\) kẻ đường thẳng \(b\) vuông góc với mặt phẳng \(\left( Q \right)\).
\(\left. \begin{array}{l}b \bot \left( Q \right)\\b \in mp\left( {a,b} \right)\end{array} \right\} \Rightarrow mp\left( {a,b} \right) \bot \left( Q \right)\)
Vậy tồn tại mặt phẳng chứa đường thẳng \(a\) và vuông góc với mặt phẳng \(\left( Q \right)\).
• Giả sử có thêm mặt phẳng \(\left( P \right)\) chứa đường thẳng \(a\) và vuông góc với mặt phẳng \(\left( Q \right)\).
\( \Rightarrow a = \left( P \right) \cap mp\left( {a,b} \right)\)
Theo Bài tập 3b trang 99 ta có \(a \bot \left( Q \right)\), trái với giả thiết \(a\) không vuông góc với mặt phẳng \(\left( Q \right)\).
Vậy \(\left( P \right) \equiv mp\left( {a,b} \right)\).