Bài 5 trang 25 SGK Toán 11 tập 2 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 3. Hàm số mũ. Hàm số lôgarit Toán 11 Chân trời sáng


Bài 5 trang 25 SGK Toán 11 tập 2 - Chân trời sáng tạo

So sánh các cặp số sau:

Đề bài

So sánh các cặp số sau:

a) \({\log _\pi }0,8\) và \({\log _\pi }1,2\);

b) \({\log _{0,3}}2\) và \({\log _{0,3}}2,1\);

Phương pháp giải - Xem chi tiết

Sử dụng tính chất của hàm số lôgarit.

Lời giải chi tiết

a) Hàm số \(y = {\log _\pi }x\) có cơ số \(\pi  > 1\) nên đồng biến trên \(\left( {0; + \infty } \right)\).

Mà \(0,8 < 1,2\) nên \({\log _\pi }0,8 < {\log _\pi }1,2\)

b) Hàm số \(y = {\log _{0,3}}x\) có cơ số \(0,3 < 1\) nên nghịch biến trên \(\left( {0; + \infty } \right)\).

Mà \(2 < 2,1\) nên \({\log _{0,3}}2 > {\log _{0,3}}2,1\).


Cùng chủ đề:

Bài 5 trang 12 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 5 trang 13 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 5 trang 19 SGK Toán 11 tập 1 - Chân trời ság tạo
Bài 5 trang 19 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 5 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 5 trang 25 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 5 trang 33 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 5 trang 33 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 5 trang 34 SGK Toán 11 tập 2 - Chân trời sáng tạo
Bài 5 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 5 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo