Bài 6 trang 104 SGK Toán 11 tập 1 - Cánh Diều
Cho hình chóp S.ABCD có đáy là ABCD là hình bình hành. Lấy điểm M trên cạnh AD sao cho AD=3AM. Gọi G, N lần lượt là trọng tâm của tam giác SAB, ABC.
Đề bài
Cho hình chóp S.ABCD có đáy là ABCD là hình bình hành. Lấy điểm M trên cạnh AD sao cho AD=3AM. Gọi G, N lần lượt là trọng tâm của tam giác SAB, ABC.
a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD).
b) Chứng minh rằng MN song song với mặt phẳng (SCD) và NG song song với mặt phẳng (SAC).
Lời giải chi tiết
+Ta có: KN=13KB=16DB
Tam giác DAB có: DNDB=DK+KNDB=12DB+16DBDB=23=DMDA
Theo Ta lét, suy ra MN // AB mà AB // CD
Suy ra MN // CD mà CD ⊂(SCD) nên MN // (SCD).
+ Gọi E là trung điểm của AB
G là trọng tâm tam giác SAB nên EGSE=13
N là trọng tâm tam giác ABC nênENEC=13
Theo Ta lét, suy ra GN // SC mà SC ⊂ (SAC) . Do đó, GN // (SAC)