Bài 7 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài tập cuối chương 4 Toán 11 Chân trời sáng tạo


Bài 7 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo

Quan hệ song song trong không gian có tính chất nào trong các tính chất sau?

Đề bài

Quan hệ song song trong không gian có tính chất nào trong các tính chất sau?

A. Nếu hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau thì mọi đường thẳng nằm trong \(\left( P \right)\) đều song song với \(\left( Q \right)\).

B. Nếu hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau thì mọi đường thẳng nằm trong \(\left( P \right)\) đều song song với mọi đường thẳng nằm trong \(\left( Q \right)\).

C. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phân biệt \(\left( P \right)\) và \(\left( Q \right)\) thì \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau.

D. Qua một điểm nằm ngoài mặt phẳng cho trước ta vẽ được một và chỉ một đường thẳng song song với mặt phẳng cho trước đó.

Phương pháp giải - Xem chi tiết

Sử dụng các tính chất của hai mặt phẳng song song.

Lời giải chi tiết

A đúng vì hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau thì chúng không có điểm chung, do vậy mọi đường thẳng nằm trong \(\left( P \right)\) đều không có điểm chung với \(\left( Q \right)\) nên song song với mặt phẳng \(\left( Q \right)\).

B sai vì đường thẳng nằm trong \(\left( P \right)\) và đường thẳng nằm trong \(\left( Q \right)\) có thể chéo nhau.

C sai vì \(\left( P \right)\) và \(\left( Q \right)\) có thể cắt nhau.

D sai vì qua một điểm nằm ngoài một mặt phẳng cho trước ta vẽ được vô số đường thẳng song song với mặt phẳng cho trước đó, tập hợp các đường thẳng này là mặt phẳng duy nhất song song với mặt phẳng đã cho.

Chọn A.


Cùng chủ đề:

Bài 7 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 7 trang 82 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 7 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 7 trang 86 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 7 trang 98 SGK Toán 11 tập 2 – Chân trời sáng tạo
Bài 7 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 7 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 8 trang 13 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 8 trang 20 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 8 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo
Bài 8 trang 34 SGK Toán 11 tập 2 - Chân trời sáng tạo