Bài 7 trang 51 SGK Toán 11 tập 2 - Chân trời sáng tạo
Tính đạo hàm của các hàm số sau:
Đề bài
Tính đạo hàm của các hàm số sau:
a) \(y = 3{x^4} - 7{x^3} + 3{x^2} + 1\);
b) \(y = {\left( {{x^2} - x} \right)^3}\);
c) \(y = \frac{{4{\rm{x}} - 1}}{{2{\rm{x}} + 1}}\)
Phương pháp giải - Xem chi tiết
a) Sử dụng công thức tính đạo hàm của một tổng.
b) Sử dụng công thức tính đạo hàm của hàm hợp: \(y{'_x} = y{'_u}.u{'_x}\).
c) Sử dụng công thức tính đạo hàm của một thương.
Lời giải chi tiết
a) \(y' = 3.4{{\rm{x}}^3} - 7.3{{\rm{x}}^2} + 3.2{\rm{x}} + 0 = 12{{\rm{x}}^3} - 21{{\rm{x}}^2} + 6{\rm{x}}\);
b) Đặt \(u = {x^2} - x\) thì \(y = {u^3}\). Ta có: \(u{'_x} = {\left( {{x^2} - x} \right)^\prime } = 2{\rm{x}} - 1\) và \(y{'_u} = {\left( {{u^3}} \right)^\prime } = 3{u^2}\).
Suy ra \(y{'_x} = y{'_u}.u{'_x} = 3{u^2}.\left( {2{\rm{x}} - 1} \right) = 3\left( {2{\rm{x}} - 1} \right){\left( {{x^2} - x} \right)^2}\).
Vậy \(y' = 3\left( {2{\rm{x}} - 1} \right){\left( {{x^2} - x} \right)^2}\).
c)
\(y' = \frac{{{{\left( {4{\rm{x}} - 1} \right)}^\prime }\left( {2{\rm{x}} + 1} \right) - \left( {4{\rm{x}} - 1} \right){{\left( {2{\rm{x}} + 1} \right)}^\prime }}}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}}\)
\(\begin{array}{l} = \frac{{4\left( {2{\rm{x}} + 1} \right) - \left( {4{\rm{x}} - 1} \right).2}}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}}\\ = \frac{{8{\rm{x}} + 4 - 8{\rm{x}} + 2}}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}} = \frac{6}{{{{\left( {2{\rm{x}} + 1} \right)}^2}}}\end{array}\)