Bài 84 trang 99 SGK Toán 9 tập 2 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Bài 10. Diện tích hình tròn, hình quạt tròn


Bài 84 trang 99 SGK Toán 9 tập 2

a) Vẽ lại hình tạo bởi các cung tròn

Đề bài

a) Vẽ lại hình tạo bởi các cung tròn xuất phát từ đỉnh \(C\) của tam giác đều \(ABC\) cạnh \(1 cm\). Nêu cách vẽ (h.63).

b) Tính diện tích miền gạch sọc.

Phương pháp giải - Xem chi tiết

+) Sử dụng compa và thước thẳng để vẽ hình.

+) Áp dụng công thức tính diện tích cung tròn \(n^0\) của đường tròn bán kính \(R\) là: \(S = \dfrac{{\pi {R^2}n}}{{360}}.\)

+) Áp dụng diện tích hình tròn bán kính \(R\) là \(S= \pi R^2\)

Lời giải chi tiết

a) Vẽ tam giác đều \(ABC\) cạnh \(1cm\)

Vẽ \(\dfrac{1}{3}\) đường tròn tâm \(A\), bán kính \(1cm\), ta được cung \(\overparen{CD}\)

Vẽ cung \(\overparen{DE}\) của đường tròn tâm \(B\), bán kính \(2cm\) sao cho \(\widehat {DBE} =120^0\)

Vẽ cung \(\overparen{EF}\) của đường tròn tâm \(C\), bán kính \(3cm\) sao cho \(\widehat {ECF} =120^0\)

b) Diện tích hình quạt \(CAD\) là \(\dfrac{1}{3}\) \(π.1^2\)

Diện tích hình quạt \(DBE\) là \(\dfrac{1}{3}\) \(π.2^2\)

Diện tích hình quạt \(ECF\) là \(\dfrac{1}{3}\) \(π.3^2\)

Diện tích phần gạch sọc là  \(\dfrac{1}{3}.π.1^2+ \dfrac{1}{3}.π.2^2 +\dfrac{1}{3}.π.3^2\)

\(=\dfrac{1}{3}\) \(π (1^2 + 2^2 + 3^2) = \dfrac{14}{3}π\) (\(cm^2\))


Cùng chủ đề:

Bài 79 trang 98 SGK Toán 9 tập 2
Bài 80 trang 98 SGK Toán 9 tập 2
Bài 81 trang 99 SGK Toán 9 tập 2
Bài 82 trang 99 SGK Toán 9 tập 2
Bài 83 trang 99 SGK Toán 9 tập 2
Bài 84 trang 99 SGK Toán 9 tập 2
Bài 85 trang 100 SGK Toán 9 tập 2
Bài 86 trang 100 SGK Toán 9 tập 2
Bài 87 trang 100 SGK Toán 9 tập 2
Bài 88 trang 103 SGK Toán 9 tập 2
Bài 89 trang 104 SGK Toán 9 tập 2