Processing math: 25%

Bài 89 trang 104 SGK Toán 9 tập 2 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Ôn tập chương III – Góc với đường tròn


Bài 89 trang 104 SGK Toán 9 tập 2

Trong hình 67, cung AmB có số đo là 60^0. Hãy:

Trong hình 67, cung AmB có số đo là 600. Hãy:

a) b) c)

a) Vẽ góc ở tâm chắn cung AmB. Tính góc AOB.

b) Vẽ góc nội tiếp đỉnh C chắn cung AmB. Tính góc ACB.

c) Vẽ góc tạo bởi tia tiếp tuyến Bt và dây cung BA. Tính góc ABt.

Phương pháp giải:

- Góc ở tâm là góc có đỉnh trùng với tâm của đường tròn. Số đo góc ở tâm bằng số đo cung bị chắn.

- Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn. Số đo góc nội tiếp bằng nửa số đo cung bị chắn

- Góc tạo bởi tia tiếp tuyến và dây cung là góc có đỉnh tại tiếp điểm, một cạnh là tia tiếp tuyến và cạnh kia chứa dây cung. Số đo góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo cung bị chắn.

Lời giải chi tiết:

a) Từ O nối với hai đầu mút của cung AB

Ta có ^AOB là góc ở tâm chắn cung AB

^AOB là góc ở tâm chắn cung AB nên

^AOB =sđAmB

b) Lấy một điểm C bất kì trên (O). Nối C với hai đầu mút của cung AmB. Ta được góc nội tiếp \widehat {ACB}

Khi đó: \displaystyle \widehat {ACB} = {1 \over 2}sđ\overparen{AmB}={1 \over 2}{60^0} = 30^0

c) Vẽ bán kính OB. Qua B vẽ Bt\bot OB. Ta được góc ABt là góc tạo bởi tia tiếp tuyến Bt với dây cung BA.

Ta có: \displaystyle \widehat {ABt} = {1 \over 2}sđ\overparen{AmB} = {30^0}

d) e)

d) Vẽ góc ADB có đỉnh D ở bên trong đường tròn. So sánh \widehat {A{\rm{D}}B}  với \widehat {ACB} .

e) Vẽ góc AEB có đỉnh E ở bên ngoài đường tròn (EC cùng phía đối với AB). So sánh \widehat {A{\rm{E}}B} với \widehat {ACB}

Phương pháp giải:

- Góc có đỉnh bên trong và bên ngoài đường tròn (xem lại SGK toán 9 tập 2 trang 80). Số đo góc có đỉnh bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn, số đo góc có đỉnh bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn.

Lời giải chi tiết:

d) Lấy điểm D bất kì ở bên trong đường tròn (O). Nối D với AD với B, ta được góc ADB là góc có đỉnh ở bên trong đường tròn (O)

Đường thẳng AD cắt đường tròn tại điểm thứ hai là K, DB cắt đường tròn tại điểm thứ hai là C.

Ta có:

\eqalign{ & \widehat {ACB} = {1 \over 2}sđ\overparen{AmB}\cr & \widehat {A{\rm{D}}B} = {1 \over 2}\left( sđ\overparen{AmB}+ sđ\overparen{CK} \right) \cr}

sđ\overparen{AmB}+sđ\overparen{CK}>sđ\overparen{AmB}(do sđ\overparen{CK}>0) nên \widehat {A{\rm{D}}B} > \widehat {ACB}

e) Lấy điểm E bất kì ở bên ngoài đường tròn, nối E với AE với B, chúng cắt đường tròn lần lượt tại JI.

Ta có

 \widehat {ACB} = {1 \over 2}sđ\overparen{AmB} (góc nội tiếp chắn cung AmB) \widehat {A{\rm{E}}B} = {1 \over 2}\left( sđ\overparen{AmB} - sđ\overparen{IJ} \right) (góc có đỉnh nằm ngoài đường tròn)

sđ\overparen{AmB}sđ \overparen{IJ}< sđ\overparen{AmB} (do sđ\overparen{IJ}> 0)

Nên \widehat {A{\rm{E}}B} < \widehat {ACB}.


Cùng chủ đề:

Bài 84 trang 99 SGK Toán 9 tập 2
Bài 85 trang 100 SGK Toán 9 tập 2
Bài 86 trang 100 SGK Toán 9 tập 2
Bài 87 trang 100 SGK Toán 9 tập 2
Bài 88 trang 103 SGK Toán 9 tập 2
Bài 89 trang 104 SGK Toán 9 tập 2
Bài 90 trang 45 SGK Toán 7 tập 1
Bài 90 trang 104 SGK Toán 9 tập 2
Bài 91 trang 104 SGK Toán 9 tập 2
Bài 92 trang 104 SGK Toán 9 tập 2
Bài 93 trang 104 SGK Toán 9 tập 2