Bài 97 trang 105 SGK Toán 9 tập 2
Cho tam giác ABC vuông ở A. Trên AC lấy một điểm M và vẽ đường tròn đường kính MC.
Đề bài
Cho tam giác \(ABC\) vuông ở \(A\). Trên \(AC\) lấy một điểm \(M\) và vẽ đường tròn đường kính \(MC\). Kẻ \(BM\) cắt đường tròn tại \(D\). Đường thẳng \(DA\) cắt đường tròn tại \(S\). Chứng minh rằng:
a) \(ABCD\) là một tứ giác nội tiếp;
b) \(\widehat {AB{\rm{D}}} = \widehat {AC{\rm{D}}}\) ;
c) \(CA\) là tia phân giác của góc \(SCB\)
Phương pháp giải - Xem chi tiết
+ Sử dụng dấu hiệu nhận biết tứ giác nội tiếp: Nếu hai đỉnh kề một cạnh của một tứ giác cùng nhìn cạnh đối diện dưới các góc bằng nhau thì tứ giác đó là tứ giác nội tiếp.
+ Sử dụng: “Hai góc nội tiếp cùng chắn một cung thì bằng nhau”
Lời giải chi tiết
a) Ta có góc \(\widehat {MDC}\) là góc nội tiếp chắn nửa đường tròn \((O)\) nên \(\widehat {MDC} = {90^0}\)
\(\Rightarrow\) \(∆CDB\) là tam giác vuông nên nội tiếp đường tròn đường kính \(BC\).
Ta có \(∆ABC\) vuông tại \(A\).
Do đó \(∆ABC\) nội tiếp trong đường tròn tâm \(I\) đường kính \(BC\).
Ta có \(A\) và \(D\) là hai đỉnh kề nhau cùng nhìn \(BC\) dưới một góc \(90^0\) không đổi nên tứ giác \(ABCD\) nội tiếp đường tròn đường kính \(BC\)
b) Trong đường tròn (I): \(\widehat {AB{\rm{D}}}\)= \(\widehat {AC{\rm{D}}}\) (góc nội tiếp cùng chắn cung \(AD\).
Vậy \(\widehat {AB{\rm{D}}} = \widehat {AC{\rm{D}}}\)
c) Ta có:
\(\widehat {ADB} + \widehat {BDS} = {180^0}\) ( 2 góc kề bù)
Mà \(\widehat {MCS} + \widehat {MDS} = {180^0}\) (tứ giác CMDS nội tiếp đường tròn (O))
Từ đó ta có: \(\widehat {ADB}=\widehat {MCS}\) (1)
Lại có tứ giác ABCD nội tiếp nên \(\widehat {ADB}=\widehat {ACB}\)(góc nội tiếp cùng chắn cung AB (2)
Từ (1) và (2) \(\Rightarrow\) \(\widehat {MCS}=\widehat {ACB}\)
Vậy tia \(CA\) là tia phân giác của góc \(SCB\)