Câu 12 trang 106 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 2. Dãy số


Câu 12 trang 106 SGK Đại số và Giải tích 11 Nâng cao

Cho dãy số (un) xác định bởi :

Đề bài

Cho dãy số (u n ) xác định bởi :

\({u_1} = 1\,\text{ và }\,{u_n} = 2{u_{n - 1}} + 3\) với mọi \(n ≥ 2\).

Bằng phương pháp quy nạp, chứng minh rằng với mọi \(n ≥ 1\) ta có \({u_n} = {2^{n + 1}}-3\)   (1)

Lời giải chi tiết

+) Với \(n = 1\) ta có \({u_1} = 1 = {2^2}-3\).

Vậy (1) đúng với \(n = 1\)

+) Giả sử (1) đúng với \(n = k\) tức là ta có :  \({u_k} = {2^{k + 1}} - 3\)

+) Ta chứng minh (1) đúng với \(n = k + 1\), tức là phải chứng minh :

\({u_{k + 1}} = {2^{k + 2}} - 3\)

Thật vậy theo giả thiết qui nạp ta có :

\({u_{k + 1}} = 2{u_k} + 3 = 2\left( {{2^{k + 1}} - 3} \right) + 3 = {2^{k + 2}} - 3\)

Vậy (1) đúng với \(n = k + 1\) do đó (1) đúng với mọi \(n \in \mathbb N^*\).


Cùng chủ đề:

Câu 12 trang 18 SGK Hình học 11 Nâng cao
Câu 12 trang 51 SGK Hình học 11 Nâng cao
Câu 12 trang 63 SGK Đại số và Giải tích 11 Nâng cao
Câu 12 trang 80 SGK Hình học 11 Nâng cao
Câu 12 trang 102 SGK Hình học 11 Nâng cao
Câu 12 trang 106 SGK Đại số và Giải tích 11 Nâng cao
Câu 12 trang 124 SGK Hình học 11 Nâng cao
Câu 12 trang 142 SGK Đại số và Giải tích 11 Nâng cao
Câu 12 trang 195 SGK Đại số và Giải tích 11 Nâng cao
Câu 12 trang 225 SGK Đại số và Giải tích 11 Nâng cao
Câu 13 trang 17 SGK Đại số và Giải tích 11 Nâng cao