Câu 12 trang 142 SGK Đại số và Giải tích 11 Nâng cao
Tìm giới hạn của các dãy số (un) với
Tìm giới hạn của các dãy số (u n ) với
LG a
un=−2n3+3n−23n−2
Phương pháp giải:
Chia cả tử và mẫu của biểu thức cần tính giới hạn cho lũy thừa bậc cao nhất của n.
Lời giải chi tiết:
Ta có:
un=n3(−2+3n2−2n3)n3(3n2−2n3) =−2+3n2−2n33n2−2n3
Vì lim
Và \displaystyle \lim \left( {{3 \over {{n^2}}} - {2 \over {{n^3}}}} \right) = 0;
Nên \displaystyle \lim {u_n} = - \infty
LG b
{u_n} = {{\root 3 \of {{n^6} - 7{n^3} - 5n + 8} } \over {n + 12}}
Lời giải chi tiết:
Chia tử và mẫu của phân thức cho n, ta được :
{u_n} = \dfrac{{\dfrac{{\sqrt[3]{{{n^6} - 7{n^3} - 5n + 8}}}}{n}}}{{\dfrac{{n + 12}}{n}}} = \dfrac{{\sqrt[3]{{\dfrac{{{n^6} - 7{n^3} - 5n + 8}}{{{n^3}}}}}}}{{1 + \dfrac{{12}}{n}}} = \dfrac{{\sqrt[3]{{{n^3} - 7 - \dfrac{5}{{{n^2}}} + \dfrac{8}{{{n^3}}}}}}}{{1 + \dfrac{{12}}{n}}} = \dfrac{{\sqrt[3]{{{n^3}\left( {1 - \dfrac{7}{{{n^3}}} - \dfrac{5}{{{n^5}}} + \dfrac{8}{{{n^6}}}} \right)}}}}{{1 + \dfrac{{12}}{n}}} = \dfrac{{n\sqrt[3]{{1 - \dfrac{7}{{{n^3}}} - \dfrac{5}{{{n^5}}} + \dfrac{8}{{{n^6}}}}}}}{{1 + \dfrac{{12}}{n}}}
\eqalign{ & \text{ Vì }\,\lim n\root 3 \of {1 - {7 \over {{n^3}}} - {5 \over {{n^5}}} + {8 \over n^6}} = + \infty \cr & \text{ và }\,\lim \left( {1 + {{12} \over n}} \right) = 1 > 0 \cr & \text{ nên }\,{{\mathop{\rm lim u}\nolimits} _n} = + \infty \cr}