Câu 13 trang 18 SGK Hình học 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 4. Phép quay và phép đối xứng tâm


Câu 13 trang 18 SGK Hình học 11 Nâng cao

Cho hai tam giác vuông cân OAB

Đề bài

Cho hai tam giác vuông cân OAB và OA'B' có chung đỉnh O sao cho O nằm trên đoạn thẳng AB' và nằm ngoài đoạn thẳng A'B (h.16). Gọi G và G' lần lượt là trọng tâm các tam giác OAA' và OBB'.Chứng minh GOG' là tam giác vuông cân.

Lời giải chi tiết

Gọi Q là phép quay tâm O, góc quay \({\pi \over 2}\) (bằng góc lượng giác (OA ; OB)).

Khi đó Q:

+) biến O thành O

+) biến A thành B

+) biến A’ thành B’

Tức là Q biến tam giác OAA’ và OBB’

Bởi vậy Q biến G (trọng tâm tam giác OAA’) thành G’ (trọng tâm tam giác OBB’).

Suy ra \(OG = OG’\) và \(\widehat {GOG'} = {\pi \over 2}\)

Vậy GOG’ là tam giác vuông cân tại đỉnh O

Chú ý: Phép quay Q biến trọng tâm G tam giác ABC thành trọng tâm G’ của tam giác A’B’C’ ảnh của △ABC qua Q được suy ra từ phép quay Q biến trung điểm của đoạn thẳng thành trung điểm đoạn thẳng.

Nghĩa là do phép quay Q biến AA' thành BB' thì biến trung điểm M của AA' thành trung điểm N của BB'.

Do đó Q biến OM thành ON. Khi đó Q biến G (thuộc OM) thành G' (thuộc ON) và \(OG' = OG = \frac{2}{3}OM = \frac{2}{3}ON\).

Vậy Q biến G thành G' là trọng tâm tam giác OBB'.


Cùng chủ đề:

Câu 12 trang 124 SGK Hình học 11 Nâng cao
Câu 12 trang 142 SGK Đại số và Giải tích 11 Nâng cao
Câu 12 trang 195 SGK Đại số và Giải tích 11 Nâng cao
Câu 12 trang 225 SGK Đại số và Giải tích 11 Nâng cao
Câu 13 trang 17 SGK Đại số và Giải tích 11 Nâng cao
Câu 13 trang 18 SGK Hình học 11 Nâng cao
Câu 13 trang 51 SGK Hình học 11 Nâng cao
Câu 13 trang 63 SGK Đại số và Giải tích 11 Nâng cao
Câu 13 trang 102 SGK Hình học 11 Nâng cao
Câu 13 trang 106 SGK Đại số và Giải tích 11 Nâng cao
Câu 13 trang 142 SGK Đại số và Giải tích 11 Nâng cao