Câu 13 trang 142 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Dãy số có giới hạn vô cực


Câu 13 trang 142 SGK Đại số và Giải tích 11 Nâng cao

Tìm các giới hạn sau :

Tìm các giới hạn sau :

LG a

\(\lim \left( {2n + \cos n} \right)\)

Phương pháp giải:

Đặt n ra làm nhân tử chung rồi tính giới hạn.

Lời giải chi tiết:

Ta có:

\(\eqalign{ & 2n + \cos n = n\left( {2 + {{\cos n} \over n}} \right) \cr & \left| {{{\cos n} \over n}} \right| \le {1 \over n},\lim {1 \over n} = 0 \cr &\Rightarrow \lim {{\cos n} \over n} = 0 \cr} \)

Do đó  \(\lim \left( {2 + {{\cos n} \over n}} \right) = 2 > 0\) và \(\lim n = + \infty \)

Suy ra  \(\lim \left( {2n + \cos n} \right) = + \infty \)

LG b

\(\lim \left( {{1 \over 2}{n^2} - 3\sin 2n + 5} \right)\)

Phương pháp giải:

Đặt \(n^2\) ra làm nhân tử chung tính giới hạn.

Lời giải chi tiết:

\(\eqalign{ & \lim \left( {{1 \over 2}{n^2} - 3\sin 2n + 5} \right) \cr &= \lim {n^2}\left( {{1 \over 2} - {{3\sin 2n} \over n^2} + {5 \over {{n^2}}}} \right) = + \infty \cr & \text{ Vì }\,\lim {n^2} = + \infty \cr &\text{ và }\,\lim \left( {{1 \over 2} - {{3\sin 2n} \over n^2} + {5 \over {{n^2}}}} \right) = {1 \over 2} > 0 \cr} \)


Cùng chủ đề:

Câu 13 trang 18 SGK Hình học 11 Nâng cao
Câu 13 trang 51 SGK Hình học 11 Nâng cao
Câu 13 trang 63 SGK Đại số và Giải tích 11 Nâng cao
Câu 13 trang 102 SGK Hình học 11 Nâng cao
Câu 13 trang 106 SGK Đại số và Giải tích 11 Nâng cao
Câu 13 trang 142 SGK Đại số và Giải tích 11 Nâng cao
Câu 13 trang 195 SGK Đại số và Giải tích 11 Nâng cao
Câu 13 trang 225 SGK Đại số và Giải tích 11 Nâng cao
Câu 14 trang 18 SGK Hình học 11 Nâng cao
Câu 14 trang 28 SGK Đại số và Giải tích 11 Nâng cao
Câu 14 trang 51 SGK Hình học 11 Nâng cao