Câu 14 trang 142 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Dãy số có giới hạn vô cực


Câu 14 trang 142 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng

Đề bài

Chứng minh rằng nếu \(q > 1\) thì  \(\lim {q^n} = + \infty .\)

Phương pháp giải - Xem chi tiết

Đặt \(q' = \dfrac{1}{q} \Rightarrow q = \dfrac{1}{{q'}}\) và tính giới hạn \(\lim q^n\).

Chú ý: \(\lim {\left( {q'} \right)^n} = 0\) khi \(0<q'<1\).

Lời giải chi tiết

Đặt \(q' = \dfrac{1}{q} \Rightarrow q = \dfrac{1}{{q'}}\).

Do \(q > 1 \Rightarrow 0 < q'  < 1\) \( \Rightarrow \lim {\left( {q'} \right)^n} = 0\)

\( \Rightarrow \lim {q^n} = \lim {\left( {\dfrac{1}{{q'}}} \right)^n} = \lim \dfrac{1}{{{{\left( {q'} \right)}^n}}}\)

Vì \(1 > 0\) và \(\left\{ \begin{array}{l}\lim {\left( {q'} \right)^n} = 0\\{\left( {q'} \right)^n} > 0\end{array} \right.\) nên \(\lim {q^n} =  + \infty \).


Cùng chủ đề:

Câu 14 trang 28 SGK Đại số và Giải tích 11 Nâng cao
Câu 14 trang 51 SGK Hình học 11 Nâng cao
Câu 14 trang 63 SGK Đại số và Giải tích 11 Nâng cao
Câu 14 trang 102 SGK Hình học 11 Nâng cao
Câu 14 trang 106 SGK Đại số và Giải tích 11 Nâng cao
Câu 14 trang 142 SGK Đại số và Giải tích 11 Nâng cao
Câu 14 trang 195 SGK Đại số và Giải tích 11 Nâng cao
Câu 14 trang 225 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 18 SGK Hình học 11 Nâng cao
Câu 15 trang 28 SGK Đại số và Giải tích 11 Nâng cao
Câu 15 trang 51 SGK Hình học 11 Nâng cao