Câu 19 trang 19 SGK Hình học 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 4. Phép quay và phép đối xứng tâm


Câu 19 trang 19 SGK Hình học 11 Nâng cao

Trong mặt phẳng tọa độ

Đề bài

Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta :ax + by + c = 0\) và điểm \(I\left( {{x_0};{y_o}} \right)\). Phép đối xứng tâm \({D_I}\) biến đường thẳng \(△\) thành đường thẳng \(△’\). Viết phương trình của \(△’\)

Lời giải chi tiết

Giả sử \(M (x , y) \in △\) và \(M’ (x’ , y') \in △’\) và I là trung điểm của MM’ nên:

\(\left\{ \begin{array}{l} {x_0} = \frac{{x + x'}}{2}\\ {y_0} = \frac{{y + y'}}{2} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x + x' = 2{x_0}\\ y + y' = 2{y_0} \end{array} \right.\)

\(\Rightarrow \left\{ {\matrix{{x = 2{x_0} - x'} \cr {y = 2{y_0} - y'} \cr} } \right.\)

\(M(x , y) ∈△\) nên

\(\begin{array}{l} a\left( {2{x_0} - x'} \right) + b\left( {2{y_0} - y'} \right) + c = 0\\ \Leftrightarrow 2a{x_0} - ax' + 2b{y_0} - by' + c = 0\\ \Leftrightarrow 2a{x_0} + 2b{y_0} + c = ax' + by'\\ \Leftrightarrow ax' + by' - \left( {2a{x_0} + 2b{y_0} + c} \right) = 0 \end{array}\)

Vậy M’ nằm trên đường thẳng ảnh \(△’\) có phương trình:

\(ax + by - \left( {2a{x_0} + 2b{y_0} + c} \right) = 0\)


Cùng chủ đề:

Câu 18 trang 103 SGK Hình học 11 Nâng cao
Câu 18 trang 109 SGK Đại số và Giải tích 11 Nâng cao
Câu 18 trang 143 SGK Đại số và Giải tích 11 Nâng cao
Câu 18 trang 204 SGK Đại số và Giải tích 11 Nâng cao
Câu 18 trang 226 SGK Đại số và Giải tích 11 Nâng cao
Câu 19 trang 19 SGK Hình học 11 Nâng cao
Câu 19 trang 29 SGK Đại số và Giải tích 11 Nâng cao
Câu 19 trang 55 SGK Hình học 11 Nâng cao
Câu 19 trang 67 SGK Đại số và Giải tích 11 Nâng cao
Câu 19 trang 103 SGK Hình học 11 Nâng cao
Câu 19 trang 114 SGK Đại số và Giải tích 11 Nâng cao