Câu 22 trang 30 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 2. Phương trình lượng giác cơ bản


Câu 22 trang 30 SGK Đại số và Giải tích 11 Nâng cao

Tính các góc của tam giác ABC

Đề bài

Tính các góc của tam giác \(ABC\), biết \(AB = \sqrt 2  cm\), \(AC =\sqrt 3  cm\) và đường cao \(AH = 1cm\). (Gợi ý : Xét trường hợp \(B, C\) nằm khác phía đối với \(H\) và trường hợp \(B, C\) nằm cùng phía đối với \(H\)).

Lời giải chi tiết

Ta xét hai trường hợp :

a/ \(B\) và \(C\) nằm khác phía đối với \(H\)

Trong tam giác vuông \(ABH\) ta có :

\(\sin B = {{AH} \over {AB}} = {1 \over {\sqrt 2 }}\)

Suy ra \(\widehat B = 45^\circ \) (chú ý rằng góc \(B\) nhọn)

Trong tam giác \(ACH\) ta có :

\(\sin C = {{AH} \over {AC}} = {1 \over {\sqrt 3 }},\) suy ra \(\widehat C \approx 35^\circ 15'52\)

Từ đó  \(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) \approx 99^\circ 44'8\)

b/ \(B\) và \(C\) nằm cùng phía đối với \(H\)

Tương tự như trên ta có:

\(\sin \widehat {ABH} = \frac{{AH}}{{AB}} = \frac{1}{{\sqrt 2 }}\) \( \Rightarrow \widehat {ABH} = {45^0}\)

\(\eqalign{ & \widehat {ABC} = 180^\circ - \widehat {ABH} \cr&= 180^\circ - 45^\circ = 135^\circ \cr } \)

\(\sin \widehat {ACH} = \frac{{AH}}{{AC}} = \frac{1}{{\sqrt 3 }}\) \( \Rightarrow \widehat {ACH} = {35^0}15'52''\)

Từ đó \(\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) \approx 9^\circ 44'8\)


Cùng chủ đề:

Câu 21 trang 114 SGK Đại số và Giải tích 11 Nâng cao
Câu 21 trang 151 SGK Đại số và Giải tích 11 Nâng cao
Câu 21 trang 204 SGK Đại số và Giải tích 11 Nâng cao
Câu 21 trang 226 SGK Đại số và Giải tích 11 Nâng cao
Câu 22 trang 23 SGK Hình học 11 Nâng cao
Câu 22 trang 30 SGK Đại số và Giải tích 11 Nâng cao
Câu 22 trang 55 SGK Hình học 11 Nâng cao
Câu 22 trang 67 SGK Đại số và Giải tích 11 Nâng cao
Câu 22 trang 111 SGK Hình học 11 Nâng cao
Câu 22 trang 115 SGK Đại số và Giải tích 11 Nâng cao
Câu 22 trang 151 SGK Đại số và Giải tích 11 Nâng cao