Câu 25 trang 205 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 2. Các quy tắc tính đạo hàm


Câu 25 trang 205 SGK Đại số và Giải tích 11 Nâng cao

Viết phương trình tiếp tuyến của parabol

Đề bài

Viết phương trình tiếp tuyến của parabol \(y = {x^2}\) , biết rằng tiếp tuyến đó đi qua điểm A(0 ; -1).

Hướng dẫn : Trước hết viết phương trình tiếp tuyến tại điểm có hoành độ x 0 thuộc parabol đã cho. Sau đó tìm x 0 để tiếp tuyến đi qua điểm A (chú ý rằng điểm A không thuộc parabol).

Lời giải chi tiết

Đặt \(f\left( x \right) = {x^2}\) và gọi M 0 là điểm thuộc (P) với hoành độ x 0 . Khi đó tọa độ của điểm M 0 là \(\left( {{x_0};f\left( {{x_0}} \right)} \right)\,hay\,\left( {{x_0};x_0^2} \right)\)

Cách 1 : Ta có: \(y’ = 2x\). Phương trình tiếp điểm của (P) tại điểm M 0

\(y = 2{x_0}\left( {x - {x_0}} \right) + x_0^2 \Leftrightarrow y = 2{x_0}x - x_0^2\)

Tiếp tuyến đó đi qua điểm A(0 ; -1) nên ta có :

\( - 1 = 2{x_0}.0 - x_0^2 \Leftrightarrow {x_0} =  \pm 1\)

+ Với x 0 = 1 thì f(x 0 ) = 1, f ’(x 0 ) = 2 và phương trình tiếp tuyến phải tìm là :

\(y = 2\left( {x - 1} \right) + 1 \Leftrightarrow y = 2x - 1\)

+ Với x 0 = -1 thì f(x 0 ) = 1, f ’(x 0 ) = -2

và phương trình tiếp tuyến phải tìm là :

\(y =  - 2\left( {x + 1} \right) + 1 \Leftrightarrow y =  - 2x - 1\)

Vậy có hai tiếp tuyến của (P) đi qua

A với các phương trình tương ứng là: \(y = ±2x – 1\)

Cách 2 : Phương trình đường thẳng (d) đi qua A(0 ; -1) với hệ số góc k là :

\(y = kx - 1\)

Để (d) tiếp xúc (P) tại điểm M 0 điều kiện cần và đủ là:

\(\left\{ {\matrix{   {f\left( {{x_0}} \right) = k{x_0} - 1}  \cr   {f'\left( {{x_0}} \right) = k}  \cr  } } \right.\,hay\,\left\{ {\matrix{   {x_0^2 = k{x_0} - 1}  \cr   {2{x_0} = k}  \cr  } } \right.\)

Khử x 0 từ hệ này ta tìm được \(k = ±2\).

Vậy có hai tiếp tuyến của (P) đi qua điểm A(0 ; -1) với các phương trình là :

\(y =  \pm 2x - 1\)


Cùng chủ đề:

Câu 25 trang 59 SGK Hình học 11 Nâng cao
Câu 25 trang 75 SGK Đại số và Giải tích 11 Nâng cao
Câu 25 trang 112 SGK Hình học 11 Nâng cao
Câu 25 trang 115 SGK Đại số và Giải tích 11 Nâng cao
Câu 25 trang 152 SGK Đại số và Giải tích 11 Nâng cao
Câu 25 trang 205 SGK Đại số và Giải tích 11 Nâng cao
Câu 25 trang 227 SGK Đại số và Giải tích 11 Nâng cao
Câu 26 trang 29 SGK Hình học 11 Nâng cao
Câu 26 trang 32 SGK Đại số và Giải tích 11 Nâng cao
Câu 26 trang 59 SGK Hình học 11 Nâng cao
Câu 26 trang 75 SGK Đại số và Giải tích 11 Nâng cao