Câu 26 trang 32 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 2. Phương trình lượng giác cơ bản


Câu 26 trang 32 SGK Đại số và Giải tích 11 Nâng cao

Dùng công thức biến đổi tổng thành tích , giải các phương trình sau :

Dùng công thức biến đổi tổng thành tích , giải các phương trình sau :

LG a

\(\cos 3x = \sin 2x\)

Lời giải chi tiết:

\(\eqalign{& \cos 3x = \sin 2x \cr& \Leftrightarrow \cos 3x = \cos \left( {\frac{\pi }{2} - 2x} \right)\cr&\Leftrightarrow \cos 3x - \cos \left( {{\pi \over 2} - 2x} \right) = 0 \cr & \Leftrightarrow  - 2\sin \left( {\frac{{3x + \frac{\pi }{2} - 2x}}{2}} \right)\sin \left( {\frac{{3x - \frac{\pi }{2} + 2x}}{2}} \right) = 0\cr&\Leftrightarrow - 2\sin \left( {{x \over 2} + {\pi \over 4}} \right)\sin \left( {{{5x} \over 2} - {\pi \over 4}} \right) = 0 \cr} \)

\( \Leftrightarrow \left[ \begin{array}{l} \sin \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = 0\\ \sin \left( {\frac{{5x}}{2} - \frac{\pi }{4}} \right) = 0 \end{array} \right.\)

\( \Leftrightarrow \left[ {\matrix{{{x \over 2} + {\pi \over 4} = k\pi } \\ {{{5x} \over 2} - {\pi \over 4} = k\pi } \cr} } \right.\\ \Leftrightarrow \left[ {\matrix{{x = - {\pi \over 2} + k2\pi } \\ {x = {\pi \over {10}} + k{{2\pi } \over 5}} } } \right. ,k\in Z\)

LG b

\(\sin (x – 120˚) – \cos 2x = 0\)

Lời giải chi tiết:

\(\eqalign{& \sin \left( {x - 120^\circ } \right) - \cos 2x = 0 \cr& \Leftrightarrow \cos \left( {{{90}^0} - x + {{120}^0}} \right) - \cos 2x = 0\cr&\Leftrightarrow \cos \left( {210^\circ - x} \right) - \cos 2x = 0 \cr &  \Leftrightarrow  - 2\sin \left( {\frac{{{{210}^0} - x + 2x}}{2}} \right)\sin \left( {\frac{{{{210}^0} - x - 2x}}{2}} \right) = 0\cr&\Leftrightarrow - 2\sin \left( {{x \over 2} + 105^\circ } \right)\sin \left( {105^\circ - {{3x} \over 2}} \right) = 0 \cr} \)

\( \Leftrightarrow \left[ \begin{array}{l} \sin \left( {\frac{x}{2} + {{105}^0}} \right) = 0\\ \sin \left( {{{105}^0} - \frac{{3x}}{2}} \right) = 0 \end{array} \right.\)

\( \Leftrightarrow \left[ {\matrix{{{x \over 2} + 105^\circ = k180^\circ } \\ {105^\circ - {{3x} \over 2} = k180^\circ } \cr} } \right. \\\Leftrightarrow \left[ {\matrix{{x = - 210^\circ + k360^\circ } \\ {x = 70^\circ - k120^\circ } \cr} } \right. ,k\in Z\)


Cùng chủ đề:

Câu 25 trang 115 SGK Đại số và Giải tích 11 Nâng cao
Câu 25 trang 152 SGK Đại số và Giải tích 11 Nâng cao
Câu 25 trang 205 SGK Đại số và Giải tích 11 Nâng cao
Câu 25 trang 227 SGK Đại số và Giải tích 11 Nâng cao
Câu 26 trang 29 SGK Hình học 11 Nâng cao
Câu 26 trang 32 SGK Đại số và Giải tích 11 Nâng cao
Câu 26 trang 59 SGK Hình học 11 Nâng cao
Câu 26 trang 75 SGK Đại số và Giải tích 11 Nâng cao
Câu 26 trang 112 SGK Hình học 11 Nâng cao
Câu 26 trang 115 SGK Đại số và Giải tích 11 Nâng cao
Câu 26 trang 158 SGK Đại số và Giải tích 11 Nâng cao