Câu 3 trang 14 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 1. Các hàm số lượng giác


Câu 3 trang 14 SGK Đại số và Giải tích 11 Nâng cao

Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau :

Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau :

a.  \(y = 2\cos \left( {x + {\pi \over 3}} \right) + 3\)

b.  \(y = \sqrt {1 - \sin \left( {{x^2}} \right)} - 1\)

c.  \(y = 4\sin \sqrt x \)

LG a

\(y = 2\cos \left( {x + {\pi \over 3}} \right) + 3\)

Phương pháp giải:

Sử dụng lí thuyết \( - 1 \le \cos u \le 1\) với u là biểu thức của x.

Lời giải chi tiết:

Ta có: \(-1 ≤ \cos \left( {x + {\pi \over 3}} \right) ≤ 1\)

\(\eqalign{ & \Rightarrow - 2 \le 2\cos \left( {x + {\pi \over 3}} \right) \le 2\cr& \Rightarrow 1 \le 2\cos \left( {x + {\pi \over 3}} \right) + 3 \le 5\cr& \Rightarrow 1 \le y \le 5 \cr &\text{ Vậy }\cr&\min \,y = 1\,khi\,x + {\pi \over 3} = \pi + k2\pi \,\cr&\text{ hay} \,x = {{2\pi } \over 3} + k2\pi \cr &\max \,y = 5\,khi\,x + {\pi \over 3} = k2\pi \cr&\text{ hay} \,x = - {\pi \over 3} + k2\pi \left( {k \in \mathbb Z} \right) \cr} \)

LG b

\(y = \sqrt {1 - \sin \left( {{x^2}} \right)} - 1\)

Lời giải chi tiết:

ĐK: \(1 - \sin \left( {{x^2}} \right) \ge 0\)

Ta có:

\( - 1 \le \sin {x^2} \le 1 \) \(\Rightarrow 1 - \left( { - 1} \right) \ge 1 - \sin {x^2} \ge 1 - 1\)

\(\Leftrightarrow 2 \ge 1 - \sin {x^2} \ge 0 \) \(\Rightarrow 0 \le 1 - \sin {x^2} \le 2\)

\( \Rightarrow 0 \le \sqrt {1 - \sin {x^2}}  \le \sqrt 2 \)

\(\Rightarrow 0- 1 \le \sqrt {1 - \sin {x^2}} - 1 \le \sqrt 2 - 1 \)

\(\Rightarrow - 1 \le y \le \sqrt 2 - 1\)

Vậy \(\min y =  - 1\) khi \(\sin {x^2} = 1 \Leftrightarrow {x^2} = \frac{\pi }{2} + k2\pi ,\)\(\left( {k \ge 0,k \in \mathbb{Z}} \right)\)

\(\max y = \sqrt 2  - 1\) khi \(\sin {x^2} =  - 1 \Leftrightarrow {x^2} =  - \frac{\pi }{2} + k2\pi ,\)\(\left( {k > 0,k \in \mathbb{Z}} \right)\)

LG c

\(y = 4\sin \sqrt x \)

Lời giải chi tiết:

Ta có:  \( - 1 \le \sin \sqrt x \le 1 \)

\(\Rightarrow - 4 \le 4\sin \sqrt x \le 4\)

\(⇒ -4 ≤ y ≤ 4\)

Vậy \(\min y =  - 4\) khi \(\sin \sqrt x  =  - 1 \Leftrightarrow \sqrt x  =  - \frac{\pi }{2} + k2\pi ,\) \(\left( {k \in \mathbb{Z},k > 0} \right)\)

\(\max y = 4\) khi \(\sin \sqrt x  = 1 \Leftrightarrow \sqrt x  = \frac{\pi }{2} + k2\pi ,\) \(\left( {k \in \mathbb{Z},k \ge 0} \right)\)


Cùng chủ đề:

Câu 2 trang 124 SGK Hình học 11 Nâng cao
Câu 2 trang 130 SGK Đại số và Giải tích 11 Nâng cao
Câu 2 trang 192 SGK Đại số và Giải tích 11 Nâng cao
Câu 2 trang 223 SGK Đại số và Giải tích 11 Nâng cao
Câu 3 trang 9 SGK Hình học 11 Nâng cao
Câu 3 trang 14 SGK Đại số và Giải tích 11 Nâng cao
Câu 3 trang 34 SGK Hình học 11 Nâng cao
Câu 3 trang 50 SGK Hình học 11 Nâng cao
Câu 3 trang 54 SGK Đại số và Giải tích 11 Nâng cao
Câu 3 trang 77 SGK Hình học 11 Nâng cao
Câu 3 trang 79 SGK Hình học 11 Nâng cao