Câu 31 trang 212 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 3. Đạo hàm của các hàm số lượng giác


Câu 31 trang 212 SGK Đại số và Giải tích 11 Nâng cao

Tìm đạo hàm của các hàm số sau :

Tìm đạo hàm của các hàm số sau :

LG a

\(y = \tan {{x + 1} \over 2}\)

Phương pháp giải:

Sử dụng công thức đạo hàm hợp và các công thức đạo hàm của các hàm số sơ cấp.

Lời giải chi tiết:

\(y' = \left( {\dfrac{{x + 1}}{2}} \right)'.\dfrac{1}{{{{\cos }^2}\dfrac{{x + 1}}{2}}}\) \(\displaystyle = {1 \over {2{{\cos }^2}{{x + 1} \over 2}}}\)

LG b

\(y = \cot \sqrt {{x^2} + 1} \)

Phương pháp giải:

Sử dụng công thức đạo hàm hợp và các công thức đạo hàm của các hàm số sơ cấp.

Lời giải chi tiết:

\(y' = \left( {\sqrt {{x^2} + 1} } \right)'.\dfrac{{ - 1}}{{{{\sin }^2}\sqrt {{x^2} + 1} }}\)\( = \left( {{x^2} + 1} \right)'.\dfrac{1}{{2\sqrt {{x^2} + 1} }}.\dfrac{{ - 1}}{{{{\sin }^2}\sqrt {{x^2} + 1} }}\) \( = \dfrac{{ - 2x}}{{2\sqrt {{x^2} + 1} }}.\dfrac{1}{{{{\sin }^2}\sqrt {{x^2} + 1} }}\)

\(\displaystyle = {{ - x} \over {\sqrt {{x^2} + 1} }}.{1 \over {{{\sin }^2}\sqrt {{x^2} + 1} }}\)

LG c

\(y = {\tan ^3}x + \cot 2x\)

Phương pháp giải:

Sử dụng công thức đạo hàm hợp và các công thức đạo hàm của các hàm số sơ cấp.

Lời giải chi tiết:

\(y' = 3{\tan ^2}x\left( {\tan x} \right)' + \left( {2x} \right)'.\dfrac{{ - 1}}{{{{\sin }^2}2x}}\) \( = 3{\tan ^2}x.\dfrac{1}{{{{\cos }^2}x}} - \dfrac{2}{{{{\sin }^2}2x}}\) \(\displaystyle = {{3{{\tan }^2}x} \over {{{\cos }^2}x}} - {2 \over {{{\sin }^2}2x}}\)

LG d

\(y = \tan 3x - \cot 3x\)

Phương pháp giải:

Sử dụng công thức đạo hàm hợp và các công thức đạo hàm của các hàm số sơ cấp.

Lời giải chi tiết:

\(y' = \left( {3x} \right)'.\dfrac{1}{{{{\cos }^2}3x}} - \left( {3x} \right)'.\dfrac{{ - 1}}{{{{\sin }^2}3x}}\) \(\displaystyle = {3 \over {{{\cos }^2}3x}} + {3 \over {{{\sin }^2}3x}} = {{12} \over {{{\sin }^2}6x}}\)

LG e

\(y = \sqrt {1 + 2\tan x} \)

Phương pháp giải:

Sử dụng công thức đạo hàm hợp và các công thức đạo hàm của các hàm số sơ cấp.

Lời giải chi tiết:

\(y' = \left( {1 + 2\tan x} \right)'.\dfrac{1}{{2\sqrt {1 + 2\tan x} }}\) \( = 2\left( {\tan x} \right)'.\dfrac{1}{{2\sqrt {1 + 2\tan x} }}\) \( = \dfrac{1}{{{{\cos }^2}x}}.\dfrac{1}{{\sqrt {1 + 2\tan x} }}\) \(\displaystyle  = {1 \over {{\sqrt {1 + 2\tan x}.{\cos }^2}x }}\)

LG f

\(y = x\cot x\)

Phương pháp giải:

Sử dụng công thức đạo hàm hợp và các công thức đạo hàm của các hàm số sơ cấp.

Lời giải chi tiết:

\(y' = x'\cot x + x.\left( {\cot x} \right)'\) \( = \cot x + x.\dfrac{{ - 1}}{{{{\sin }^2}x}}\) \(\displaystyle = \cot x - {x \over {{{\sin }^2}x}}\)


Cùng chủ đề:

Câu 31 trang 68 SGK Hình học 11 Nâng cao
Câu 31 trang 76 SGK Đại số và Giải tích 11 Nâng cao
Câu 31 trang 117 SGK Hình học 11 Nâng cao
Câu 31 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Câu 31 trang 159 SGK Đại số và Giải tích 11 Nâng cao
Câu 31 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 32 trang 31 SGK Hình học 11 Nâng cao
Câu 32 trang 42 SGK Đại số và Giải tích 11 Nâng cao
Câu 32 trang 68 SGK Hình học 11 Nâng cao
Câu 32 trang 76 SGK Đại số và Giải tích 11 Nâng cao
Câu 32 trang 117 SGK Hình học 11 Nâng cao