Câu 32 trang 117 SGK Hình học 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 5: Khoảng cách


Câu 32 trang 117 SGK Hình học 11 Nâng cao

Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = AA’ = a, AC’ = 2a. a. Tính khoảng cách từ điểm D đến mặt phẳng (ACD’) b. Tìm đường vuông góc chung của các đường thẳng AC’ và CD’. Tính khoảng cách giữa hai đường thẳng ấy.

Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = AA’ = a, AC’ = 2a.

LG a

Tính khoảng cách từ điểm D đến mặt phẳng (ACD’)

Giải chi tiết:

a. Xét tứ diện DACD’ có DA, DC, DD’ đôi một vuông góc nên khoảng cách DH từ D đến mặt phẳng (ACD’) được tính bởi hệ thức :

\({1 \over {D{H^2}}} = {1 \over {D{A^2}}} + {1 \over {D{C^2}}} + {1 \over {DD{'^2}}}\)

Ta có: DC = a. DD’ = a

\(AC{'^2} = A{C^2} + CC{'^2} = D{A^2} + D{C^2} + CC{'^2}\)

Hay \(4{a^2} = D{A^2} + {a^2} + {a^2},\)tức là \(D{A^2} = 2{a^2}\)

Vậy \({1 \over {D{H^2}}} = {1 \over {2{a^2}}} + {1 \over {{a^2}}} + {1 \over {{a^2}}} = {5 \over {2{a^2}}}\)

Do đó : \(DH = {{a\sqrt {10} } \over 5}\)

LG b

Tìm đường vuông góc chung của các đường thẳng AC’ và CD’. Tính khoảng cách giữa hai đường thẳng ấy.

Giải chi tiết:

Vì CD = DD’ = a nên CD’ ⊥ C’D. Mặt khác AD ⊥ (CDD’C’) nên CD’ ⊥ AC’ và CD’ ⊥ mp(AC’D). Gọi giao điểm của CD’ với mp(AC’D) là I. Trong mp(AC’D) kẻ IJ vuông góc với AC’ tại J thì IJ là đường vuông góc chung của AC’ và CD’.

Ta tính khoảng cách giữa AC’ và CD’

Ta có: ΔC’JI đồng dạng ΔC’DA nên \({{IJ} \over {AD}} = {{IC'} \over {AC'}}\)

Suy ra : \(IJ = AD.{{C'D} \over {2AC'}}\)

Mặt khác \(C'D = a\sqrt 2 \) nên \(IJ = a\sqrt 2 .{{a\sqrt 2 } \over {2.2a}} = {a \over 2}\)


Cùng chủ đề:

Câu 31 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 32 trang 31 SGK Hình học 11 Nâng cao
Câu 32 trang 42 SGK Đại số và Giải tích 11 Nâng cao
Câu 32 trang 68 SGK Hình học 11 Nâng cao
Câu 32 trang 76 SGK Đại số và Giải tích 11 Nâng cao
Câu 32 trang 117 SGK Hình học 11 Nâng cao
Câu 32 trang 121 SGK Đại số và Giải tích 11 Nâng cao
Câu 32 trang 159 SGK Đại số và Giải tích 11 Nâng cao
Câu 32 trang 212 SGK Đại số và Giải tích 11 Nâng cao
Câu 33 trang 32 SGK Hình học 11 Nâng cao
Câu 33 trang 42 SGK Đại số và Giải tích 11 Nâng cao