Câu 52 trang 221 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Câu hỏi và bài tập ôn tập chương V


Câu 52 trang 221 SGK Đại số và Giải tích 11 Nâng cao

Tính vi phân của hàm số

Đề bài

Tính vi phân của hàm số \(y = {1 \over {{{\left( {1 + \tan x} \right)}^2}}}\) tại điểm \(x = {\pi  \over 6}\) ứng với \(\Delta x = {\pi  \over {360}}\) (tính chính xác đến hàng phần vạn).

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(df\left( x \right) = f'\left( x \right)\Delta x\)

Lời giải chi tiết

Ta có: \(df\left( x \right) = {{ - 2\left( {1 + \tan x} \right){1 \over {{{\cos }^2}x}}} \over {{{\left( {1 + \tan x} \right)}^4}}}.\Delta x \) \(= {{ - 2\Delta x} \over {{{\cos }^2}x{{\left( {1 + \tan x} \right)}^3}}}\)

Suy ra: \(df\left( {{\pi  \over 6}} \right) = {{ - 2.{\pi  \over {360}}} \over {{{\cos }^2}{\pi  \over 6}{{\left( {1 + \tan {\pi  \over 6}} \right)}^3}}}  \) \( = {{ - \pi } \over {180.{3 \over 4}{{\left( {1 + {1 \over {\sqrt 3 }}} \right)}^3}}}\) \(\approx  - 0,0059\)


Cùng chủ đề:

Câu 51 trang 124 SGK Đại số và Giải tích 11 Nâng cao
Câu 51 trang 175 SGK Đại số và Giải tích 11 Nâng cao
Câu 51 trang 221 SGK Đại số và Giải tích 11 Nâng cao
Câu 52 trang 92 SGK Đại số và Giải tích 11 Nâng cao
Câu 52 trang 176 SGK Đại số và Giải tích 11 Nâng cao
Câu 52 trang 221 SGK Đại số và Giải tích 11 Nâng cao
Câu 52, 53, 54, 55, 56, 57 trang 125 SGK Đại số và Giải tích 11 Nâng cao
Câu 53 trang 93 SGK Đại số và Giải tích 11 Nâng cao
Câu 53 trang 176 SGK Đại số và Giải tích 11 Nâng cao
Câu 53 trang 221 SGK Đại số và Giải tích 11 Nâng cao
Câu 54 trang 93 SGK Đại số và Giải tích 11 Nâng cao