Câu 52, 53, 54, 55, 56, 57 trang 125 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài tập trắc nghiệm khách quan - Chương III. Dãy số. Cấ


Câu 52, 53, 54, 55, 56, 57 trang 125 SGK Đại số và Giải tích 11 Nâng cao

Mỗi khẳng định sau đây đúng hay sai :

Câu 52

Mỗi khẳng định sau đây đúng hay sai :

a. Tồn tại một cấp số nhân (u n ) có u 5 < 0 và u 75 > 0

b. Nếu các số thực a, b, c theo thứ tự đó lập thành một cấp số cộng có công sai khác 0 thì các số \({a^2},{b^2},{c^2}\) theo thứ tự đó cũng lập thành một cấp số cộng.

c. Nếu các số thực a, b, c theo thứ tự đó lập thành một cấp số nhân thì các số \({a^2},{b^2},{c^2}\) theo thứ tự đó cũng lập thành một cấp số nhân.

Lời giải chi tiết:

a. Sai vì  \({{{u_{75}}} \over {{u_5}}} = {q^{70}} > 0\)

b. Sai chẳng hạn 1, 2, 3 là cấp số cộng nhưng 1, 4, 9 không là cấp số cộng.

c. Đúng vì nếu a, b, c, là cấp số nhân công bội q thì các số \({a^2},{b^2},{c^2}\) là cấp số nhân công bội q 2 .

Câu 53

Cho dãy số (u n ) xác định bởi : \({u_1} = {1 \over 2}\text{ và }u_n={u_{n - 1}} + 2n\) với mọi n ≥ 2.

Khi đó u 50 bằng :

A. 1274,5

B. 2548,5

C. 5096,5

D. 2550,5

Lời giải chi tiết:

Ta có:

\(\eqalign{ & {u_n} - {u_{n - 1}} = 2n \cr & \Rightarrow {u_{50}} = \left( {{u_{50}} - {u_{49}}} \right) + \left( {{u_{49}} - {u_{48}}} \right) + ... + \left( {{u_2} - {u_1}} \right) + {u_1} \cr & = 2\left( {50 + 49 + ... + 2} \right) + {1 \over 2} \cr & = 2.{{49.52} \over 2} + 0,5= 2548,5 \cr} \)

Chọn B

Câu 54

Cho dãy số (u n ) xác định bởi \({u_1} = - 1\text{ và }{u_n} = 2n.{u_{n - 1}}\) với mọi n ≥ 2.

Khi đó u 11 bằng :

A. 2 10 .11!

B. -2 10 .11!

C. 2 10 .11 10

D. -2 10 .11 10

Lời giải chi tiết:

Ta có:

\(\eqalign{ & {{{u_n}} \over {{u_{n - 1}}}} = 2n \cr & \Rightarrow {u_{11}} = {{{u_{11}}} \over {{u_{10}}}}.{{{u_{10}}} \over {{u_9}}}...{{{u_2}} \over {{u_1}}}.{u_1} \cr & = \left( {2.11} \right)\left( {2.10} \right)...\left( {2.2} \right).\left( { - 1} \right) \cr & = - {2^{10}}.11! \cr} \)

Chọn B

Câu 55

Cho dãy số (u n ) xác định bởi : \({u_1} = 150\,\text{ và }\,{u_n} = {u_{n - 1}} - 3\) với mọi n ≥ 2.

Khi đó tổng 100 số hạng đầu tiên của dãy số đó bằng

A. 150

B. 300

C. 29850

D. 59700

Lời giải chi tiết:

Ta có:

\({u_n}-{\rm{ }}{u_{n - 1}} = {\rm{ }} - 3\)

⇒ (u n ) là cấp số cộng công sai \(d = -3\)

\(\eqalign{ & {S_{100}} = {{100\left( {2{u_1} + 99d} \right)} \over 2} \cr & = 50\left( {300 - 297} \right) = 150 \cr} \)

Chọn A

Câu 56

Cho cấp số cộng (u n ) có : u 2 = 2001 và u 5 = 1995.

Khi đó u 1001 bằng

A. 4005

B. 4003

C. 3

D. 1

Lời giải chi tiết:

Ta có:

\(\eqalign{& \left\{ {\matrix{{{u_1} + 4d = 1995} \cr {{u_1} + d = 2001} \cr} } \right. \Rightarrow \left\{ {\matrix{{d = - 2} \cr {{u_1} = 2003} \cr} } \right. \cr & \Rightarrow {u_{1001}} = {u_1} + 1000d = 2003 - 2000 = 3 \cr} \)

Chọn C

Câu 57

Cho cấp số nhân (u n ) có u 2 = -2 và u 5 = 54.

Khi đó tổng 1000 số hạng đầu tiên của cấp số nhân đó bằng

A.  \({{1 - {3^{1000}}} \over 4}\)

B.  \({{{3^{1000}} - 1} \over 2}\)

C. \({{{3^{1000}} - 1} \over 6}\)

D.  \({{1 - {3^{1000}}} \over 6}\)

Lời giải chi tiết:

Ta có:

\(\eqalign{ & {u_5} = {u_1}{q^4},{u_2} = {u_1}q \cr & \Rightarrow {q^3} = {{54} \over { - 2}} = - 27 \Rightarrow q = - 3,{u_1} = {2 \over 3} \cr & \Rightarrow {S_{1000}} = {u_1}.{{1 - {q^{1000}}} \over {1 - q}} = {2 \over 3}.{{1 - {3^{1000}}} \over 4} = {{1 - {3^{1000}}} \over 6} \cr} \)

Chọn D


Cùng chủ đề:

Câu 51 trang 175 SGK Đại số và Giải tích 11 Nâng cao
Câu 51 trang 221 SGK Đại số và Giải tích 11 Nâng cao
Câu 52 trang 92 SGK Đại số và Giải tích 11 Nâng cao
Câu 52 trang 176 SGK Đại số và Giải tích 11 Nâng cao
Câu 52 trang 221 SGK Đại số và Giải tích 11 Nâng cao
Câu 52, 53, 54, 55, 56, 57 trang 125 SGK Đại số và Giải tích 11 Nâng cao
Câu 53 trang 93 SGK Đại số và Giải tích 11 Nâng cao
Câu 53 trang 176 SGK Đại số và Giải tích 11 Nâng cao
Câu 53 trang 221 SGK Đại số và Giải tích 11 Nâng cao
Câu 54 trang 93 SGK Đại số và Giải tích 11 Nâng cao
Câu 54 trang 176 SGK Đại số và Giải tích 11 Nâng cao