Câu 53 trang 176 SGK Đại số và Giải tích 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 8. Hàm số liên tục


Câu 53 trang 176 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng

Đề bài

Chứng minh rằng phương trình \({x^3} + x + 1 = 0\) có ít nhất một nghiệm âm lớn hơn -1.

Phương pháp giải - Xem chi tiết

Sử dụng định lý: Nếu hàm số f(x) liên tục trên đoạn [a;b] và \(f(a).f(b)<0\) thì tồn tại ít nhất một điểm c∈(a;b) sao cho f(c)=0.

Lời giải chi tiết

Hàm số \(f\left( x \right) = {x^3} + x + 1\) liên tục trên đoạn [-1 ; 0] có \(f(-1) = -1\) và \(f(0) = 1\).

Vì \(f(-1)f(0) < 0\) nên theo hệ quả của định lí về giá trị trung gian của hàm số liên tục, tồn tại ít nhất một điểm \(c \in (-1 ; 0)\) sao cho \(f(c) = 0\). Số c là nghiệm âm lớn hơn -1 của phương trình đã cho.


Cùng chủ đề:

Câu 52 trang 92 SGK Đại số và Giải tích 11 Nâng cao
Câu 52 trang 176 SGK Đại số và Giải tích 11 Nâng cao
Câu 52 trang 221 SGK Đại số và Giải tích 11 Nâng cao
Câu 52, 53, 54, 55, 56, 57 trang 125 SGK Đại số và Giải tích 11 Nâng cao
Câu 53 trang 93 SGK Đại số và Giải tích 11 Nâng cao
Câu 53 trang 176 SGK Đại số và Giải tích 11 Nâng cao
Câu 53 trang 221 SGK Đại số và Giải tích 11 Nâng cao
Câu 54 trang 93 SGK Đại số và Giải tích 11 Nâng cao
Câu 54 trang 176 SGK Đại số và Giải tích 11 Nâng cao
Câu 54 trang 221 SGK Đại số và Giải tích 11 Nâng cao
Câu 55 trang 93 SGK Đại số và Giải tích 11 Nâng cao