Dạng 2. So sánh phân số Chủ đề 6 Ôn hè Toán 6 — Không quảng cáo

Bài tập ôn hè môn Toán 6 lên 7, bộ đề ôn tập hè có lời giải chi tiết Ôn tập hè Chủ đề 6. Phân số. Các bài toán về phân số


Dạng 2. So sánh phân số Chủ đề 6 Ôn hè Toán 6

Tải về

Tính chất: Nếu a < b thì -a > -b Cách 1: Đưa về 2 phân số có cùng mẫu số

Lý thuyết

Tính chất: Nếu a < b thì -a > -b

Cách 1: Đưa về 2 phân số có cùng mẫu số

Bước 1 : Quy đồng mẫu hai phân số đã cho (về cùng một mẫu dương)

Bước 2 : So sánh tử của các phân số: Phân số nào có tử lớn hơn thì lớn hơn.

Cách 2: So sánh dựa vào phân số trung gian:

Nếu a < b, b < c thì a < c

Cách 3: So sánh phần bù:

Nếu 1 – a < 1 – b thì a > b.

Cách 4: Đưa về 2 phân số có cùng tử số:

2 phân số dương có cùng tử số dương, phân số nào có mẫu số lớn hơn thì phân số đó nhỏ hơn.

Bài tập

Bài 1:

So sánh các phân số sau:

a) \(\dfrac{{ - 2}}{9}\) và \(\dfrac{{ - 3}}{{11}}\)

b) \(\dfrac{2}{5}\) và \(\dfrac{{ - 2}}{9}\)

c) \(\dfrac{{2021}}{{2022}}\) và \(\dfrac{{2022}}{{2023}}\)

Bài 2:

Sắp xếp các phân số sau theo thứ tự từ bé đến lớn:

\(\dfrac{2}{7};\dfrac{{ - 2}}{9};\dfrac{5}{{14}};\dfrac{3}{{ - 7}};\dfrac{{ - 4}}{{ - 13}}\)

Lời giải chi tiết:

Bài 1:

So sánh các phân số sau:

a) \(\dfrac{{ - 2}}{9}\) và \(\dfrac{{ - 3}}{{11}}\)

b) \(\dfrac{2}{5}\) và \(\dfrac{{ - 2}}{9}\)

c) \(\dfrac{{2021}}{{2022}}\) và \(\dfrac{{2022}}{{2023}}\)

Phương pháp

a) Đưa về 2 phân số có cùng mẫu số

Bước 1 : Quy đồng mẫu hai phân số đã cho (về cùng một mẫu dương)

Bước 2 : So sánh tử của các phân số: Phân số nào có tử lớn hơn thì lớn hơn.

b) So sánh dựa vào phân số trung gian:

Nếu a < b, b < c thì a < c

c) So sánh phần bù:

Nếu 1 – a < 1 – b thì a > b.

Lời giải

a) \(\dfrac{{ - 2}}{9}\) và \(\dfrac{{ - 3}}{{11}}\)

Ta có:

\(\begin{array}{l}\dfrac{{ - 2}}{9} = \dfrac{{( - 2).11}}{{9.11}} = \dfrac{{ - 22}}{{99}};\\\dfrac{{ - 3}}{{11}} = \dfrac{{( - 3).9}}{{11.9}} = \dfrac{{ - 27}}{{99}}\end{array}\)

Vì 22 < 27 nên -22 > -27, do đó \(\dfrac{{ - 22}}{{99}} > \dfrac{{ - 27}}{{99}}\) hay \(\dfrac{{ - 2}}{9}\) > \(\dfrac{{ - 3}}{{11}}\)

Vậy \(\dfrac{{ - 2}}{9}\) > \(\dfrac{{ - 3}}{{11}}\)

b) \(\dfrac{2}{5}\) và \(\dfrac{{ - 2}}{9}\)

Vì \(\dfrac{2}{5} > 0;\dfrac{{ - 2}}{9} < 0 \Rightarrow \dfrac{2}{5} > \dfrac{{ - 2}}{9}\)

c) \(\dfrac{{2021}}{{2022}}\) và \(\dfrac{{2022}}{{2023}}\)

Ta có:

\(\begin{array}{l}1 - \dfrac{{2021}}{{2022}} = \dfrac{{2022}}{{2022}} - \dfrac{{2021}}{{2022}} = \dfrac{1}{{2022}};\\1 - \dfrac{{2022}}{{2023}} = \dfrac{{2023}}{{2023}} - \dfrac{{2022}}{{2023}} = \dfrac{1}{{2023}}\end{array}\)

Do 2022 < 2023 nên \(\dfrac{1}{{2022}} > \dfrac{1}{{2023}}\) hay \(1 - \dfrac{{2021}}{{2022}} > 1 - \dfrac{{2022}}{{2023}}\). Do đó, \(\dfrac{{2021}}{{2022}}\) < \(\dfrac{{2022}}{{2023}}\)

Vậy \(\dfrac{{2021}}{{2022}}\) <\(\dfrac{{2022}}{{2023}}\)

Bài 2:

Sắp xếp các phân số sau theo thứ tự từ bé đến lớn:

\(\dfrac{2}{7};\dfrac{{ - 2}}{9};\dfrac{5}{{14}};\dfrac{3}{{ - 7}};\dfrac{{ - 5}}{{ - 13}}\)

Phương pháp

So sánh các phân số dương với nhau và các phân số âm với nhau rồi sắp xếp.

Phân số âm luôn nhỏ hơn phân số dương.

Lời giải

Ta có:

\(\begin{array}{l}\dfrac{2}{7};\dfrac{5}{{14}};\dfrac{{ - 5}}{{ - 13}} > 0\\\dfrac{{ - 2}}{9};\dfrac{3}{{ - 7}} < 0\end{array}\)

+) Ta có:

\(\begin{array}{l}\dfrac{{ - 2}}{9} = \dfrac{{ - 2.7}}{{9.7}} = \dfrac{{ - 14}}{{63}};\\\dfrac{3}{{ - 7}} = \dfrac{{ - 3}}{7} = \dfrac{{ - 3.9}}{{7.9}} = \dfrac{{ - 27}}{{63}}\end{array}\)

Vì 14 < 27 nên -14 > -27, do đó, \(\dfrac{{ - 14}}{{63}} > \dfrac{{ - 27}}{{63}}\) hay \(\dfrac{{ - 2}}{9} > \dfrac{3}{{ - 7}}\)

+) Ta có:

\(\begin{array}{l}\dfrac{2}{7} = \dfrac{{2.2}}{{7.2}} = \dfrac{4}{{14}};\\\dfrac{{ - 5}}{{ - 13}} = \dfrac{5}{{13}}\end{array}\)

Vì 4 < 5 nên \(\dfrac{4}{{14}} < \dfrac{5}{{14}}\)

Vì 13 < 14 nên \(\dfrac{5}{{13}} > \dfrac{5}{{14}}\)

Ta được: \(\dfrac{3}{{ - 7}} < \dfrac{{ - 2}}{9} < \dfrac{2}{7} < \dfrac{5}{{14}} < \dfrac{{ - 5}}{{ - 13}}.\)

Vậy các phân số sau theo thứ tự từ bé đến lớn là: \(\dfrac{3}{{ - 7}};\dfrac{{ - 2}}{9};\dfrac{2}{7};\dfrac{5}{{14}};\dfrac{{ - 5}}{{ - 13}}.\)


Cùng chủ đề:

Dạng 2. Bảng dữ liệu. Biểu đồ tranh Chủ đề 11 Ôn hè Toán 6
Dạng 2. Các bài toán giải bằng biểu diễn số tự nhiên Chủ đề 2 Ôn hè Toán 6
Dạng 2. Chứng minh một số là số nguyên tố, hợp số Chủ đề 3 Ôn hè Toán 6
Dạng 2. Một số bài toán thực tế Chủ đề 4 Ôn hè Toán 6
Dạng 2. Nhận biết hình có tâm đối xứng Chủ đề 9 Ôn hè Toán 6
Dạng 2. So sánh phân số Chủ đề 6 Ôn hè Toán 6
Dạng 2. Tính bằng cách hợp lí Chủ đề 5 Ôn hè Toán 6
Dạng 2. Tính bằng cách hợp lí Chủ đề 7 Ôn hè Toán 6
Dạng 2. Tính chu vi và diện tích hình phẳng Chủ đề 8 Ôn hè Toán 6
Dạng 2. Xác định số phần tử của tập hợp Chủ đề 1 Ôn hè Toán 6
Dạng 2. Đoạn thẳng, trung điểm của đoạn thẳng Chủ đề 10 Ôn hè Toán 6