Đề kiểm tra 15 phút - Đề số 3 - Bài 8 - Chương 1 - Đại số 9
Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 8 - Chương 1 - Đại số 9
Đề bài
Bài 1. So sánh : \sqrt {4 + \sqrt 7 } - \sqrt {4 - \sqrt 7 } \,\,và\,\,\sqrt 3
Bài 2. Rút gọn : A = \left( {{{\sqrt a + \sqrt b } \over {\sqrt a - \sqrt b }} - {{\sqrt a - \sqrt b } \over {\sqrt a + \sqrt b }}} \right):{{\sqrt {ab} } \over {a - b}}\,\,\,\,\left( {a > 0;\,b > 0;\,a \ne b} \right)
Bài 3. Tìm x, biết : \sqrt {{x^2} + 2x + 1} - \sqrt {{x^2} - 4x + 4} = 1 - 2x\,\,\left( {*} \right) với x ≤ -1.
LG bài 1
Phương pháp giải:
Sử dụng \sqrt {{A^2}} = \left| A \right|
Lời giải chi tiết:
Đặt x = \sqrt {4 + \sqrt 7 } - \sqrt {4 - \sqrt 7 }
\begin{array}{l} \Rightarrow x\sqrt 2 = \sqrt {8 + 2\sqrt 7 } - \sqrt {8 - 2\sqrt 7 } \\ = \sqrt {7 + 2\sqrt 7 + 1} - \sqrt {1 - 2\sqrt 7 + 7} \\ = \sqrt {{{\left( {\sqrt 7 + 1} \right)}^2}} - \sqrt {{{\left( {1 - \sqrt 7 } \right)}^2}} \\ = \left| {1 + \sqrt 7 } \right| - \left| {1 - \sqrt 7 } \right|\\ = 1 + \sqrt 7 - \left( {\sqrt 7 - 1} \right) = 2 \end{array}
\Rightarrow x = \sqrt 2
Vậy x < \sqrt 2
LG bài 2
Phương pháp giải:
Quy đồng và rút gọn
Lời giải chi tiết:
Ta có:
A = \left( {{{\sqrt a + \sqrt b } \over {\sqrt a - \sqrt b }} - {{\sqrt a - \sqrt b } \over {\sqrt a + \sqrt b }}} \right):{{\sqrt {ab} } \over {a - b}}
\begin{array}{l} = \dfrac{{{{\left( {\sqrt a + \sqrt b } \right)}^2} - {{\left( {\sqrt a - \sqrt b } \right)}^2}}}{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}:\dfrac{{\sqrt {ab} }}{{a - b}}\\ = \dfrac{{a + 2\sqrt {ab} + b - a + 2\sqrt {ab} - b}}{{a - b}}.\dfrac{{a - b}}{{\sqrt {ab} }}\\ = \dfrac{{4\sqrt {ab} }}{{a - b}}.\dfrac{{a - b}}{{\sqrt {ab} }} = 4 \end{array}
LG bài 3
Phương pháp giải:
Sử dụng \sqrt {{A^2}} = \left| A \right|
Lời giải chi tiết:
Ta có:
\sqrt {{x^2} + 2x + 1} - \sqrt {{x^2} - 4x + 4} =1 - 2x
\Leftrightarrow \sqrt {{{\left( {x + 1} \right)}^2}} - \sqrt {{{\left( {x - 2} \right)}^2}} = 1 - 2x
\eqalign{ & \Leftrightarrow \left| {x + 1} \right| - \left| {x - 2} \right| = 1 - 2x \cr & \Leftrightarrow - \left( {x + 1} \right) + \left( {x - 2} \right) = 1 - 2x \cr & \left( {\text{vì}\,x \le - 1 \Rightarrow x + 1 \le 0;\,x - 2 < 0} \right) \cr & \Leftrightarrow 2x = 4 \cr}
\;\;⇔ x = 2 ( không thỏa mãn điều kiện x ≤ -1)
Vậy không tìm được giá trị của x thỏa mãn yêu cầu bài toán.