Processing math: 84%

Giải bài 1. 13 trang 14 sách bài tập toán 12 - Kết nối tri thức — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Kết nối tri thức Bài 2. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số


Giải bài 1.13 trang 14 sách bài tập toán 12 - Kết nối tri thức

Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau: a) (y = - {x^3} + 3{x^2} + 2); b) (y = frac{{{x^2}}}{{{x^2} + 2}}).

Đề bài

Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:

a) y=x3+3x2+2;

b) y=x2x2+2.

Phương pháp giải - Xem chi tiết

- Tìm tập xác định của hàm số.

- Tính đạo hàm, tìm các điểm mà tại đó đạo hàm bằng 0 hoặc đạo hàm không tồn tại.

- Lập bảng biến thiên của hàm số.

- Từ bảng biến thiên suy ra giá trị lớn nhất, nhỏ nhất (nếu có).

Lời giải chi tiết

a) Tập xác định: R

Ta có y=3x2+6x. Khi đó y=03x2+6x=0x=0 hoặc x=2.

Lập bảng biến thiên của hàm số:

Từ bảng biến thiên thấy hàm số không có cả giá trị lớn nhất và giá trị nhỏ nhất.

b) Tập xác định: R

Ta có y=1(x2+2)x2x(x2+2)2=x2+2(x2+2)2.

Khi đó y=0x2+2(x2+2)2=0x2+2=0x=2 hoặc x=2.

Lập bảng biến thiên của hàm số:

Từ bảng biến thiên, ta có: min; \mathop {\max }\limits_\mathbb{R} y = y\left( {\sqrt 2 } \right) = \frac{{\sqrt 2 }}{4}.


Cùng chủ đề:

Giải bài 1. 8 trang 9 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 9 trang 10 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 10 trang 10 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 11 trang 14 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 12 trang 14 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 13 trang 14 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 14 trang 14 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 15 trang 15 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 16 trang 15 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 17 trang 15 sách bài tập toán 12 - Kết nối tri thức
Giải bài 1. 18 trang 15 sách bài tập toán 12 - Kết nối tri thức