Giải bài 1. 21 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức — Không quảng cáo

Giải chuyên đề học tập Toán lớp 11 Kết nối tri thức Bài 6. Phép vị tự Chuyên đề học tập Toán 11 kết nối tri


Giải bài 1.21 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức

Trong mặt phẳng tọa độ Oxy, cho A(1; 2), B(3; 6).

Đề bài

Trong mặt phẳng tọa độ Oxy, cho A(1; 2), B(3; 6). Viết phương trình đường tròn (C) là ảnh của đường tròn đường kính AB qua phép vị tự \({V_{(O,3)}}\).

Phương pháp giải - Xem chi tiết

- Tìm ảnh của tâm qua \({V_{(O,3)}}\) bằng cách: Nếu \({V_{(I,k)}}{\rm{[}}M(x,y){\rm{]}} = M'(x',y')\). Khi đó, \(\left\{ \begin{array}{l}x' - a = k(x - a)\\y' - b = k(y - b)\end{array} \right.\) với \(I(a;b)\)

- Phương trình đường tròn tâm I (a,b), bán kính R là: \({\left( {x{\rm{ }}-{\rm{ a}}} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ b}}} \right)^2}\; = {\rm{ }}{{\rm{R}}^2}.\)

Lời giải chi tiết

Gọi I là trung điểm của AB, ta có I(2; 4) là tâm của đường tròn đường kính AB với bán kính là \(R = IA = \sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( {2 - 4} \right)}^2}}  = \sqrt 5 \).

Gọi I' và R' lần lượt là tâm và bán kính của đường tròn (C).

Vì đường tròn (C) là ảnh của đường tròn đường kính AB qua phép vị tự\({V_{(O,3)}}\) nên I' là ảnh của I qua phép vị tự \({V_{(O,3)}}\) và \(R' = 3R = \;3\sqrt 5 \).

Khi đó ta có: \(\overrightarrow {OI'}  = 3\overrightarrow {OI} \). Từ đó suy ra I'(6; 12).

Phương trình đường tròn (C) là \({\left( {x{\rm{ }}-{\rm{ }}6} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}12} \right)^2}\; = \;{\left( {3\sqrt 5 } \right)^2}\) hay \({\left( {x{\rm{ }}-{\rm{ }}6} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}12} \right)^2}\; = {\rm{ }}45.\)


Cùng chủ đề:

Giải bài 1. 16 trang 23 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 17 trang 23 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 18 trang 24 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 19 trang 24 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 20 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 21 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 22 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 23 trang 29 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 24 trang 31 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 25 trang 31 Chuyên đề học tập Toán 11 Kết nối tri thức
Giải bài 1. 26 trang 31 Chuyên đề học tập Toán 11 Kết nối tri thức