Processing math: 33%

Giải bài 1 trang 38 sách bài tập toán 11 - Chân trời sáng tạo tập 2 — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo Bài 1. Đạo hàm - SBT Toán 11 CTST


Giải bài 1 trang 38 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Cho hàm số (y = sqrt[3]{x}). Chứng minh rằng (y'left( x right) = frac{1}{{3sqrt[3]{{{x^2}}}}}left( {x ne 0} right)).

Đề bài

Cho hàm số y=3x. Chứng minh rằng y(x)=133x2(x0).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về định nghĩa đạo hàm để chứng minh: Cho hàm số y=f(x) xác định trên khoảng (a;b)x0(a;b). Nếu tồn tại giới hạn hữu hạn lim thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại {x_0}, kí hiệu là f'\left( {{x_0}} \right) hoặc y'\left( {{x_0}} \right). Vậy f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}

Lời giải chi tiết

Với bất kì {x_0} \ne 0 ta có: y'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{y\left( x \right) - y\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt[3]{x} - \sqrt[3]{{{x_0}}}}}{{x - {x_0}}}

= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {\sqrt[3]{x} - \sqrt[3]{{{x_0}}}} \right)\left[ {{{\left( {\sqrt[3]{x}} \right)}^2} + \sqrt[3]{x}\sqrt[3]{{{x_0}}} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}} \right]}}{{\left( {x - {x_0}} \right)\left[ {{{\left( {\sqrt[3]{x}} \right)}^2} + \sqrt[3]{x}\sqrt[3]{{{x_0}}} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}} \right]}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)}}{{\left( {x - {x_0}} \right)\left[ {{{\left( {\sqrt[3]{x}} \right)}^2} + \sqrt[3]{x}\sqrt[3]{{{x_0}}} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}} \right]}}

= \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{{{\left( {\sqrt[3]{x}} \right)}^2} + \sqrt[3]{x}\sqrt[3]{{{x_0}}} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}}} = \frac{1}{{{{\left( {\sqrt[3]{{{x_0}}}} \right)}^2} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}}} = \frac{1}{{3\sqrt[3]{{x_0^2}}}}

Vậy y'\left( x \right) = \frac{1}{{3\sqrt[3]{{{x^2}}}}}\left( {x \ne 0} \right)


Cùng chủ đề:

Giải bài 1 trang 22 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 1 trang 25 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 1 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 1 trang 30 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 1 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 1 trang 38 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 1 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 1 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 1 trang 50 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 1 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 1 trang 57 sách bài tập toán 11 - Chân trời sáng tạo tập 1