Giải bài 1 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Dùng định nghĩa để tính đạo hàm của các hàm số sau:
Đề bài
Dùng định nghĩa để tính đạo hàm của các hàm số sau:
a) f(x)=√4x+1 tại x=2;
b) f(x)=x4 tại x=−1;
c) f(x)=1x+1;
d) f(x)=3√x2+1.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định nghĩa đạo hàm để tính: Cho hàm số y=f(x) xác định trên khoảng (a;b) và x0∈(a;b). Nếu tồn tại giới hạn hữu hạn lim thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại {x_0}, kí hiệu là f'\left( {{x_0}} \right) hoặc y'\left( {{x_0}} \right). Vậy f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}
Lời giải chi tiết
a) Với bất kì {x_0} \ge \frac{{ - 1}}{4} ta có: f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt {4x + 1} - \sqrt {4{x_0} + 1} }}{{x - {x_0}}}
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {\sqrt {4x + 1} - \sqrt {4{x_0} + 1} } \right)\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{4x + 1 - 4{x_0} - 1}}{{\left( {x - {x_0}} \right)\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}}
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{4\left( {x - {x_0}} \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{4}{{\left( {\sqrt {4x + 1} + \sqrt {4{x_0} + 1} } \right)}} = \frac{4}{{2\sqrt {4{x_0} + 1} }} = \frac{2}{{\sqrt {4{x_0} + 1} }}
Suy ra: f'\left( x \right) = \frac{2}{{\sqrt {4x + 1} }}. Do đó, f'\left( 2 \right) = \frac{2}{{\sqrt {4.2 + 1} }} = \frac{2}{3}
b) Với bất kì {x_0} ta có: f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^4} - x_0^4}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {{x^2} + x_0^2} \right)\left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}}
= \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x_0^2} \right)\left( {x + {x_0}} \right) = \left( {x_0^2 + x_0^2} \right)\left( {{x_0} + {x_0}} \right) = 2x_0^2.2{x_0} = 4x_0^3
Do đó, f'\left( x \right) = 4{x^3}. Suy ra f'\left( { - 1} \right) = 4.{\left( { - 1} \right)^3} = - 4
c) Với bất kì {x_0} \ne - 1 ta có: f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{1}{{x + 1}} - \frac{1}{{{x_0} + 1}}}}{{x - {x_0}}}
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x_0} + 1 - x - 1}}{{\left( {x - {x_0}} \right)\left( {x + 1} \right)\left( {{x_0} + 1} \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left( {x - {x_0}} \right)}}{{\left( {x - {x_0}} \right)\left( {x + 1} \right)\left( {{x_0} + 1} \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - 1}}{{\left( {x + 1} \right)\left( {{x_0} + 1} \right)}}
= - \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}}
Vậy f'\left( x \right) = \frac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}}
d) Với bất kì {x_0} ta có:
f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt[3]{{{x^2} + 1}} - \sqrt[3]{{x_0^2 + 1}}}}{{x - {x_0}}}
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {\sqrt[3]{{{x^2} + 1}} - \sqrt[3]{{x_0^2 + 1}}} \right)\left( {\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}} \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}} \right)}}
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} + 1 - x_0^2 - 1}}{{\left( {x - {x_0}} \right)\left( {\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}} \right)}}
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}} \right)}}
= \mathop {\lim }\limits_{x \to {x_0}} \frac{{x + {x_0}}}{{\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}} + \sqrt[3]{{\left( {{x^2} + 1} \right)\left( {x_0^2 + 1} \right)}} + \sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}}} = \frac{{2{x_0}}}{{3\sqrt[3]{{{{\left( {x_0^2 + 1} \right)}^2}}}}}
Vậy f'\left( x \right) = \frac{{2x}}{{3\sqrt[3]{{{{\left( {{x^2} + 1} \right)}^2}}}}}