Giải bài 1 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Tính đạo hàm của các hàm số sau: a) (y = frac{{ - 3{x^2}}}{2} + frac{2}{x} + frac{{{x^3}}}{3});
Đề bài
Tính đạo hàm của các hàm số sau:
a) y=−3x22+2x+x33;
b) y=(x2−1)(x2−4)(x2+9);
c) y=x2−2xx2+x+1;
d) y=1−2xx+1;
e) y=x.e2x+1;
g) y=(2x+3).32x+1;
h) y=xln2x;
i) y=log2(x2+1).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về các quy tắc tính đạo hàm để tính: a) (u+v+w)′=u′+v′+w′,(xα)′=α.xα−1(x>0) b) (u±v)′=u′±v′,(xα)′=α.xα−1(x>0),c′=0 với c là hằng số. c, d) (uv)′=u′v−uv′v2(v=v(x)≠0) , (xα)′=α.xα−1(x>0) e) (uv)′=u′v+uv′,(eu(x))′=(u(x))′eu(x) g) (uv)′=u′v+uv′,(au(x))′=(u(x))′au(x)lna(a>0,a≠1) h) (uv)′=u′v+uv′,(lnx)′=1x(x>0),{[u(x)]α}′=α[u(x)]α−1[u(x)]′ i) (logau(x))′=u′(x)u(x)lna(u(x)>0,a>0,a≠1)
Lời giải chi tiết
a) y′=(−3x22+2x+x33)′=−3.2x2−2x2+3.x23=−3x−2x2+x2; b) Ta có: y=(x2−1)(x2−4)(x2+9)=(x4−5x2+4)(x2+9) =x6−5x4+4x2+9x4−45x2+36=x6+4x4−41x2+36 Do đó, y′=(x6+4x4−41x2+36)′=6x5+16x3−82x c) y′=(x2−2xx2+x+1)′=(x2−2x)′(x2+x+1)−(x2−2x)(x2+x+1)′(x2+x+1)2 =(2x−2)(x2+x+1)−(x2−2x)(2x+1)(x2+x+1)2 =2x3+2x2+2x−2x2−2x−2−2x3−x2+4x2+2x(x2+x+1)2=3x2+2x−2(x2+x+1)2 d) y′=(1−2xx+1)′=(1−2x)′(x+1)−(1−2x)(x+1)′(x+1)2=−2(x+1)−(1−2x)(x+1)2 =−2x−2−1+2x(x+1)2=−3(x+1)2 e) y′=(x.e2x+1)′=x′.e2x+1+x.(e2x+1)′=e2x+1+x.2.e2x+1=e2x+1(2x+1); g) y′=((2x+3).32x+1)′=(2x+3)′.32x+1+(2x+3).(32x+1)′ =2.32x+1+(2x+3)(2x+1)′.32x+1ln3=2.32x+1+2.32x+1(2x+3)ln3=2.32x+1[(2x+3)ln3+1] h) y′=(xln2x)′=x′ln2x+x.(ln2x)′=ln2x+2x.lnx.1x=ln2x+2.lnx; i) y′=[log2(x2+1)]′=(x2+1)′(x2+1)ln2=2x(x2+1)ln2