Giải bài 2. 12 trang 25 sách bài tập toán 9 - Kết nối tri thức tập 1 — Không quảng cáo

SBT Toán 9 - Giải SBT Toán 9 - Kết nối tri thức với cuộc sống Bài 5. Bất đẳng thức và tính chất - SBT Toán 9 KNTT


Giải bài 2.12 trang 25 sách bài tập toán 9 - Kết nối tri thức tập 1

Chứng minh rằng với mọi số a, b ta có (frac{{{a^2} + {b^2}}}{2} ge ab).

Đề bài

Chứng minh rằng với mọi số a, b ta có \(\frac{{{a^2} + {b^2}}}{2} \ge ab\).

Phương pháp giải - Xem chi tiết

Chứng minh hiệu \(\frac{{{a^2} + {b^2}}}{2} - ab \ge 0\), từ đó suy ra \(\frac{{{a^2} + {b^2}}}{2} \ge ab\).

Lời giải chi tiết

Ta có: \(\frac{{{a^2} + {b^2}}}{2} - ab = \frac{1}{2}\left( {{a^2} - 2ab + {b^2}} \right) = \frac{1}{2}{\left( {a - b} \right)^2} \ge 0\) với mọi a, b.

Do đó, \(\frac{{{a^2} + {b^2}}}{2} \ge ab\)


Cùng chủ đề:

Giải bài 2. 7 trang 25 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 2. 8 trang 25 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 2. 9 trang 25 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 2. 10 trang 25 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 2. 11 trang 25 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 2. 12 trang 25 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 2. 13 trang 25 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 2. 14 trang 28 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 2. 15 trang 28 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 2. 16 trang 28 sách bài tập toán 9 - Kết nối tri thức tập 1
Giải bài 2. 17 trang 28 sách bài tập toán 9 - Kết nối tri thức tập 1