Giải bài 2.28 trang 54 sách bài tập toán 12 - Kết nối tri thức
Cho tứ diện (ABCD). Trọng tâm (G) của tứ diện là điểm duy nhất thỏa mãn đẳng thức (overrightarrow {GA} + overrightarrow {GB} + overrightarrow {GC} + overrightarrow {GD} = overrightarrow 0 ). Chứng minh rằng tọa độ của điểm (G) được cho bởi công thức: ({x_G} = frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4};{y_G} = frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4};{z_G} = frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}.)
Đề bài
Cho tứ diện \(ABCD\). Trọng tâm \(G\) của tứ diện là điểm duy nhất thỏa mãn đẳng thức
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \). Chứng minh rằng tọa độ của điểm \(G\) được cho bởi công thức:
\({x_G} = \frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4};{y_G} = \frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4};{z_G} = \frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}.\)
Phương pháp giải - Xem chi tiết
Sử dụng biến đổi tương đương, từng bước biến đổi đẳng thức ban đầu (đẳng thức về khái niệm trọng tâm của tứ diện) để dẫn đến công thức cần chứng minh.
Lời giải chi tiết
\(\begin{array}{l}\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \left( \begin{array}{l}{x_A} - {x_G} + {x_B} - {x_G} + {x_C} - {x_G} + {x_D} - {x_G};{y_A} - {y_G} + {y_B} - {y_G} + {y_C} - {y_G} + {y_D} - {y_G};\\{z_A} - {z_G} + {z_B} - {z_G} + {z_C} - {z_G} + {z_D} - {z_G}\end{array} \right)\\ = \left( {{x_A} + {x_B} + {x_C} + {x_D} - 4{x_G};{y_A} + {y_B} + {y_C} + {y_D} - 4{y_G};{z_A} + {z_B} + {z_C} + {z_D} - 4{z_G}} \right)\end{array}\)
Ta có \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \left\{ \begin{array}{l}{x_A} + {x_B} + {x_C} + {x_D} - 4{x_G} = 0\\{y_A} + {y_B} + {y_C} + {y_D} - 4{y_G} = 0\\{z_A} + {z_B} + {z_C} + {z_D} - 4{z_G} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4}\\{z_G} = \frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}\end{array} \right.\)
Suy ra tọa độ \(G\) được xác định theo công thức \({x_G} = \frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4};{y_G} = \frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4};\)
\({z_G} = \frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}\)(điều phải chứng minh).